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Abstract—Parameter fitting consists on the estimation of model
parameters using experimental data from the studied process,
which can be considered as a nonlinear optimization problem.
In this sense, evolutionary computation has shown its great capa-
bility to solve multimodal nonlinear optimization problems. This
paper compares different variants of the Differential Evolution
(DE) algorithm to minimize the residual sum of squares between
the outcome of the mathematical model and experimental data.
To compare the different variants of the DE algorithm, a
biopolymer production model is considered. Simulations results
suggest a trend for the best fit using the DE/best/ variants.
However, the DE/rand/ variant provides more stable results
respect to the average and standard deviation of different trials.
Finally, the biopolymer production problem is discussed.

Keywords—Parameter Estimation, Differential Evolution Algo-
rithm, Bioprocesses

I. INTRODUCTION

Model simulations can initiate predictions for further and

conclusive experiments. This framework has the potential to

advance knowledge in different engineering applications [1]–

[3]. However, before considering mathematical models for

reliable predictions, the values for unknown model parameters

need to be estimated. Parameter procedures consist on mini-

mizing the error between the model output and experimental

data. Due to nonlinear features and complexity of several

mathematical models, evolutionary optimization algorithms

with features of collective intelligence are the perfect tools

to address such problems [4].

A popular algorithm that has been used in several modeling

works (e.g. [5]–[10]) to estimate model parameters is the DE

algorithm [11]. For instance, in [5] parameter estimation is

assessed for a nonlinear biochemical dynamic model formed

by 8 differential equations; in [7] the DE algorithm is used

for optimization of the feeding trajectories in fed-batch fer-

mentation processes, and in [6] the DE algorithm is used for

parameter optimization in a gene regulatory network. In these

three cases, the DE algorithm showed satisfactory results.

To extend the parameter fitting discussion [5], three variants

of DE algorithm are tested, these are the DE/best/1/bin [4],

DE/rand/1/bin [12], and DE/best/1/exp [13]. For numerical

examples, we consider the plastic production problem which is

very relevant in our society. Plastics are one of the most used

materials worldwide and their production rate is increasing

over the years. Nowadays, worldwide plastic material con-

sumption is approximately 140 million tons per year causing

large amounts of waste which contribute to the pollution

of the environment [14]. Plastic materials have been for

long time produced through petrochemicals routes. Theses

have a high durability and are resistant to degradation. Such

properties have been for a long time considered relevant for

the industrial production. However, plastics are a large source

of environmental and waste management problems nowadays

[14].
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Fig. 1. Bio-plastics life cycle. Bio-plastics are produced by microorganisms,
which are collected after being used as solid wasters. Consequently, these are
degraded and used as carbon sources for the microorganisms.

The replacement of a fraction of synthetic plastics with

biodegradable polymers produced from renewable resources

offers to impact on the overall consumption of fossil fuels,

environmental pollution and solid waste management [15].

Bio-plastics can easily be degraded (Fig.1), in this way the



plastics abandoned in the nature could be largely degraded,

serving as a carbon substrate to different microorganisms.

In this work, a mathematical model that represents the bio-

plastic production will be used to test the performance of

DE algorithm variants. This paper is organized as follow: in

section II, the mathematical model for bio-polymer production

is introduced. In section III the objective functions used to

evaluate the estimation results are explained. In section IV

the variants of the DE algorithm are presented. Results are

discussed in section V, and conclusions are presented in

section VI.

II. MATHEMATICAL MODEL

Among the candidates for bio-plastics production, Poly-

hydroxyalkanoates (PHAs) have been drawing much attention

because of their similar material properties to conventional

plastics and complete biodegradability. In addition, PHAs are

naturally produced as granules in the cytoplasm of cells.

Nevertheless, the amount of bacterial production is until today

insufficient compared to the demand and the reduced quantity

of production, influencing the price of bio-plastics in the

market. Mathematical modeling represents an important venue

to reduce the costs of bio-polymer production.

To this end, the mathematical model proposed here is

described by equations (1)-(4), where S is the glucose as

carbon source, N is the NH4 concentration, X is the active

biomass, and P is the biopolymer PHA.

dS(t)

dt
= −k1µS(t) (1)

dN(t)

dt
= −k2µN (t) (2)

dX(t)

dt
= µ(t) (3)

dP (t)

dt
= k3µ(t) + k4µP (t) (4)

In a similar way as [16], the limiting nutrient is NH4 and

the total biomass (CDW ) is assumed to be composed by

the catalytically active biomass and the product PHA, thus

CDW = X +P . The substrate S is consumed mainly by the

active biomass with a rate constant k1, which is modeled by

equation (1) and the following Monod function:

µS(t) =
X(t)

X(t) +KS

S(t) (5)

where KS is the saturation or affinity constant of the substrate

S. NH4 dynamics are represented by the equation (2). Experi-

mental data in [17] indicate that the ammonium is completely

consumed in the growth phase. Note that we tested different

functions for the NH4 consumption, nevertheless, the best

estimations were achieved by the following rate equation:

µN (t) =
X(t)

X(t) +KN

N(t) (6)

where KN is the saturation or affinity constant of the substrate

N . Active biomass dynamics by the Pseudomonas putida are

presented in equation (3). The growth rate of biomass with

glucose is defined according to a “double Monod” relation.

The limiting substrate ammonium (N ) is essential to produce

the active biomass X and limits its synthesis at low concen-

trations. The active biomass growth µ writes as follows:

µ(t) = µmax

(

S(t)

S(t) +KS1

)(

N(t)

N(t) +KN1

)

X(t) (7)

where µmax is the maximum growth rate, this is set by the

experimental values presented in [17]. The bioploymer PHA is

produced with a rate k4 by the active biomass dynamics (X),

which is trigger by a limited amount of ammonium provided

in the growth medium, this can be expressed by the following

equation:

µp(t) =
KP

N(t) +KP

X(t) (8)

Note that µp(t) term will increase when the value of

ammonium decreases. To provide a better fitting for the PHA,

we needed to introduce a growing term based on the biomass

growth k3 implying that small amounts of PHA are produced

during biomass growth. Thus, the model parameter set to be

estimated by the DE variants reads as follows:

θ = [k1, k2, k3, k4,KS ,KN ,KS1,KN1,KP ] (9)

III. COST FUNCTION

Parametric estimation for mathematical models can be un-

derstood as the values search for the model parameters (θ)

that minimizes the difference between the outcome of model

ȳi and experimental data yi (inverse problem). This search is

restricted by the system dynamics and process constraints. Due

to the different scales of experimental values, we considered

the sum of the square of weighted residues SSWR, this writes

as follows:

SSWR =

m
∑

j=1

n
∑

i=1

(

yji − ȳji
max(yji )

)2

(10)

where m is the total number of variables, n is the total

number of experimental data for each variable j, yi is the i-th

experimental data point from [17] and ȳi is the i-th outcome

of the mathematical model described by equations (1)-(4).

IV. DIFFERENTIAL EVOLUTION ALGORITHM

The minimization of the cost function (10) implies a non-

linear optimization problem with several variables, which can

be tackled using the DE algorithm [11]. The DE algorithm

is a population-based optimization algorithm, where each

individual in the population is a n-dimensional vector that

represents a candidate solution to the problem. The individuals

can be defined as:

xi,g = [χ1
i,g, χ

2
i,g, ..., χ

n
i,g] (11)

with

i = {1, 2, ..., NP} , and

g = {1, 2, ..., G}
(12)



where χn
i,g are the elements of the i-th individual in the

generation g, n is the dimension of the problem, the variable G
represents the maximum number of generations and NP is the

size of the population. The basic idea behind the DE algorithm

is that two individuals mutually excluding x1 6= x2 are picked

randomly among population, its difference is scaled and added

to a third individual x3 /∈ {x1, x2} chosen randomly to create

a new mutant vector vi. The DE algorithm is explained with

the following steps:

I) Initialization: the population is initialized within a

bounded search space defined as χmin =
{

χ1
min, ..., χ

n
min

}

and χmax =
{

χ1
max, ..., χ

n
max

}

, where Xmin and Xmax are

the sets of lower and upper bounds for the elements of the

individuals.

II) Mutation: different strategies exist for the mutation

procedure. In this work, the following mutation strategies are

considered [11], [18]:

1) DE/best/1/

vi,g = xbest,g + F (xr1,g − xr2,g) (13)

2) DE/rand/1/

vi,g = xr3,g + F (xr1,g − xr2,g) (14)

where vi,g is the mutant vector; xbest,g is the individual with

the best fit in the current generation; xr1,g, xr2,g and xr3,g are

different vectors chosen randomly among the population, and

F ∈ [0, 1] is the scaling factor.

III) Crossover: a new trial vector is generated recombining

the mutant vi,g and target xi,g vectors. The principal ap-

proaches of crossover are the binomial and exponential [11],

[18], described in equations (15) and (16) respectively.

uj
i,g =

{

vji,g if rcj ≤ Cr or j = jrand
xj
i,g otherwise

(15)

where j ∈ [1, n] is the j-th component of ui,g, vi,g, and

xi,g , rcj ∈ [0, 1] is a random number taken from a uniform

distribution. Cr ∈ [0, 1] is a constant crossover rate, and jrand
∈ [1, n] is a random number taken from a uniform distribution.

uj
i,g =

{

vji,g if j ∈ A ∪B

xj
i,g otherwise

(16)

where A := {s, ...,min(n, s+ L− 1)}, and B :=
{1, ..., s+ L− n− 1}. s represents the starting element in

a target vector to create a new trial vector recombining the

L elements donated by the mutant vector. s is an integer

randomly taken from the interval [1, n], and L is draw from

the interval [1, n] according with the following code:

1: L = 0

2: while ((rand(0,1) ≤ Cr) and (L < n)) do

3: L = L+ 1
4: end while

where Cr is called the crossover rate. F , NP and Cr are the

control parameters of the DE algorithm.

VI) Selection: the cost function is used to determinate

which vector survives for the new generation (g + 1), the

mutant vi,g and target xi,g vectors are evaluated in order to

find which vector has the best yield, the basic idea is presented

next:

xi,g+1 =

{

ui,g if f (ui,g) ≤ f (xi,g)
xi,g if f (xi,g) < f (ui,g)

(17)

where f(•) is the evaluation of the objective function.

Note that some characteristics from a generation can be

transferred to the next one in the DE/best/ variants. In this way,

the members of the next generation can have certain properties

of the current leader, reducing the space of search. Otherwise,

the next generation is randomly generated favoring the space

of search (DE/rand/).

V. RESULTS

The parameters of the mathematical model equations (1)-

(4) can not be measured directly using common model op-

timization strategies (e.g. least value, steepest descendant,

inner and outer approximation) due to the non-linearity and

complexity of the model. The DE algorithm is an algorithm

with self-adaption, self-organizing and self-learning which

allows to address challenging problems that can not be solved

by traditional methods.

The three control parameters are setting as, Cr = 0.7, F =
0.8, and population size depends on the number of parameters

to be estimated NP = 20 ∗ n.

A. DE algorithm performance

The DE variants were assessed to estimate the model

parameters presented in (9) with the experimental data of

PHA production by the wild-type strain P. putida [17]. Table I

presents the performance of the three variants after 500 trials.

TABLE I
DE ALGORITHM VARIANTS. SD REPRESENTS THE STANDARD

DEVIATION.

Variant Best Average ± SD Time (sec)

DE/Best/1/exp 0.0711 0.2049 ± 0.1308 865

DE/Best/1/bin 0.0709 0.2560 ± 0.1693 927

DE/Rand/1/bin 0.0847 0.1099 ± 0.0448 930

In general, the three variants reveal a good performance, and

its outcome provides a close approximation to experimental

data. We can observe in Table I that DE/best/ variants perform

better in the “best fitting” columns respect to DE/Rand/. This

can be attributed to the fast convergence time, see Fig. 2.

However, it is interesting to observe in this example that the

intuitive idea of transferring to the next generation certain

properties of the current leader by the variants DE/best/

does not contribute to the average reduction of the error but

increasing the standard deviation. Note that for several reasons,

experimental data possess large variations, therefore robust

algorithms to estimate parameters are highly preferred.
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Fig. 2. Estimation error dynamics.

B. Biological problem

The experimental work in [17] assessed the growth and PHA

production performance by the wild type P. putida KT2440 in

minimal medium using glucose as a carbon source (18.5 g

L−1) and a limiting amount of ammonium as nitrogen source

350 (mg L−1). The experimental results by [17] are shown

in Fig. 3. Cells (X) present an exponential growth during

the first 20 hours, subsequently the cell growth slows down

which is mainly attributed to the limited levels of glucose

and ammonium presented in the medium. The PHA content

exhibits two phases; the first is proportional to the cell growth

and the second is when ammonium presented in the medium

is less than 0.1 (g L−1).

Here, the reactor dynamics represented with the system

(1)-(4) is portrayed in Fig. 3, showing the good fitting to

the experimental data (empty circle) presented in [17]. Note

that previous mathematical models for biopolymer production

proposed more complex equations [19]–[22]. Here, different

terms were considered for the substrates equations (1)-(2), e.g.

bilinear terms (k1SX) or more complex like Hill functions

(Xn/(Xn + KS)), however further improvements in the fit-

ting values were not achieved. Thus, these results show the

importance of a minimalist model.

To achieve good predictions for PHA dynamics, a produc-

tion term as a function of the bacterial growth (k3) was needed.

The highest production to PHA can be also attributed to the

adequate consumption of the substrates. Fig. 3 revealed that

the growth of the biomass depends directly on the ammonium.

We can see when the ammonium is exhausted in medium,

the biomass stops growing. Furthermore, both substrate and

ammonium decrease logarithmically. The substrate and am-

monium dynamics are simpler than the biomass and PHA

production, due to they have a linear behavior in a part of

the process. On the other hand, biomass and PHA dynamics

are more complex throughout the process, resulting only in

more complicated dynamics to model.

The principal advantage of our model in comparison with

previous mathematical models is that our model is less com-

plex. For example, in [19]–[24] proposed substrates equations

with bilinear terms (k1SX) or more complex like Hill func-

tions (Xn/(Xn+KS)), however further improvements in the

cost function were not achieved.

VI. CONCLUSIONS

In this paper, we presented a comparative study of different

variants of DE algorithm tested for parametric estimation of

a mathematical model. This estimation presents a good fitting

for the P. putida strain. The DE algorithm showed to be a

very useful tool for parameter estimation, something that we

could not reach by applying traditional methods. Comparing

the different variants of the DE algorithm, simulations results

revealed a trend for the DE/best/, which also offers more

restricted search space for parameter values. However, for this

example, DE/rand/ performs better respect to the average and

standard deviation.

Further identifiability and experimental studies need to be

developed in order to corroborate the parameter values. Future

work will compare to other optimization methods, like Particle

Swarm Optimization (PSO), or Simulated Annealing (SA). In

addition, the extension of the present model to the fed-batch

case will be relevant to propose control strategies to minimize

production costs.
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