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Switching Strategies to Mitigate HIV Mutation
Esteban Abelardo Hernandez-Vargas, Patrizio Colaneri, and Richard H. Middleton

Abstract— HIV mutates rapidly and may develop resistance
to specific drug therapies. There is no general agreement on
how to optimally schedule the available treatments for mitigating
the effects of mutations. With a switched positive linear system,
we examined different control strategies applied to a higher
order nonlinear mutation model. Simulation results suggest that
model predictive control could outperform the common clinical
treatment recommendations. This brief is a step forward to
develop further tools for helping the practitioners to find the
optimal treatment schedule.

Index Terms— HIV, model predictive control (MPC), mutation,
positive systems.

I. INTRODUCTION

H IGHLY active antiretroviral therapies (HAARTs), gen-
erally consisting of three different drugs, are the most

important treatment for HIV-infected patients [1]. Unfortu-
nately, HAART is not always successful. Many patients have
long-term complications, whereas others experience virolog-
ical failure: inability to maintain HIV RNA levels less than
200 copies/mL [1]. In most cases, viral rebound is associated
with the emergence of resistance-conferring mutations within
the viral genome, resulting in virus with reduced susceptibility
to one or more of the drugs. This is caused by the reverse tran-
scription process of viral RNA into DNA, which is susceptible
to errors, introducing on average one base-pair mutation for
each viral genome transcribed [2].

In this environment, one clinical goal is to delay the time
until patients exhibit strains resistant to all existing regimens.
There is therefore a crucial tradeoff between switching thera-
pies. On the one hand, early switching risks poor adherence to
a new drug regimen and prematurely exhausting the limited
number of remaining salvage therapies. On the other hand,
switching drugs too late allows the accumulation of mutations
that leads to multidrug resistance [3].

Antiretroviral guidelines (AIDSinfo) [1] revealed that prac-
titioners have not achieved consensus on the optimal time to
change therapy in response to virological failure. The most
acceptable strategy has been allowing detectable viremia up
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to a higher level (1000–500 copies/mL). The latter approach
we term as switch on virologic failure treatment.

In the same spirit as [4], we are concerned with a class of
switched systems, where the continuous control is absent and
only the switching signal must be determined [5]. In this brief,
no constraints or penalties are imposed on switching. Under a
particular symmetric assumption on the matrices, Hernandez-
Vargas et al. [6] provided necessary conditions for optimality
over a finite horizon, for which the optimal states and costates
lie on a sliding surface.

For autonomous switched linear systems, the optimal con-
trol yields a two-point boundary value problem, which cannot
be solved using regular techniques. Therefore, a general solu-
tion for the optimal control problem is difficult to reach either
analytically or numerically [7].

One option for reducing the computational complexity of
a complete optimal control problem is to perform optimal
control decisions over a short receding horizon, this is a model
predictive control (MPC) approach. Alternatively, while retain-
ing a full horizon for the decisions, but relaxing the demand of
optimality, piecewise copositive Lyapunov functions may be
used to obtain suboptimal switching rules with a guaranteed
level of performance [4].

Previous works in [4], [7], and [8] suggest that suboptimal
controllers based on a switched linear reduction have superior
performance to commonly used strategies in clinical practice.
These studies were designed and applied on switched linear
systems, which can approximate HIV dynamics when the
patient is under treatment. However, it is very important to
verify the effectiveness of these strategies in a more realistic
scenario.

In this brief, we design a state observer and base control
decisions on state estimates, rather than the nonlinear simu-
lation model. Our simulation results suggest that a switched
system observer coupled with MPC may give a very effective
method for treatment scheduling in HIV infection.

II. SWIT CHING TREATMENT TO MITIGATE HIV

The process of reverse transcription is extremely error prone
and it is during this step that mutations can occur. In the
absence of on-going viral replication, the generation of new
variants is also arrested [2]. Therefore, Mellors et al. [9]
noted that stronger suppression of viral replication reduces
the chance that a resistant mutant will emerge. Hernandez-
Vargas et al. [4] suggest that a strong suppression of the total
viral load (VT ) increase the probability of viral extinction.
Therefore, control strategies should penalize the total viral load

VT :=
n∑

i=1

Vi (1)

1063-6536 © 2013 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

where Vi is the concentration of the i th genotype and n is the
total number of genotypes.

Remark 1: Even during long periods of viral suppression
under HAART, latently infected cells are still present. There-
fore, viral eradication may be impossible. Cellular reservoirs
may contribute to HIV persistence promoting the emergence
of resistant mutants [10]. Given the wide diversity of resistant
mutants, the underlying HIV treatment problem might not be
stabilizable [4].

A. HIV Mutation Model

There are many different mechanisms potentially involved
in HIV infection, limited measurement capability, significant
time variations, and nonlinearities. Therefore, modeling HIV
infection is not a trivial problem [11], [12]. In contrast to
the majority of the existing models, Hernandez-Vargas and
Middleton [13] proposed a mathematical model that represents
the three key clinical phases observed in untreated HIV
infection: 1) an early peak in the acute infection; 2) a long
asymptomatic period; and 3) a final increase in viral load with
simultaneous collapse in healthy CD4+T cell counts. More-
over, the model proposed in [13] retains its ability to describe
the three stages of the infection even under moderately large
full parameter variations.

With the model [13], we consider a nonlinear model with
the viral genotype i under a treatment σ using the fol-
lowing populations: uninfected CD4+T cells (T ), infected
CD4+T cells (T ∗), uninfected macrophages (M), and infected
macrophages (M∗). The model is as follows:

Ṫ = sT + ρT

CT + VT
T VT −

n∑

i=1

ki
T ,σ T Vi − δT T

Ṁ = sM + ρM

CM + VT
MVT −

n∑

i=1

ki
M,σ MVi − δM M

Ṫ ∗
i = ki

T ,σ T Vi +
n∑

j=1

μmi, j V j T − δT ∗ T ∗
i

Ṁ∗
i = ki

M,σ MVi +
n∑

j=1

μmi, j V j M − δM∗ M∗
i

V̇i = pi
T ,σ T ∗

i + pi
M,σ M∗

i − δV Vi . (2)

The infection rate constant for the i th strain is written
as ki

T ,σ for CD4+T cells and ki
M,σ for macrophages. Viral

proliferation is achieved in infected activated CD4+T cells
and infected macrophages, this with rate constants pi

T ,σ and
pi

M,σ , respectively. These parameters depend on the fitness
of the genotype and the therapy that is used. The mutation
rate is expressed by μ, and mi, j ∈ {0, 1} represents the
genetic connections between genotypes. The death rates for
the relevant species are δT , δT ∗ , δM , δM∗ , and δV . A further
explanation of the biological mechanisms and parameters
involved in (2) can be found in [13].

Theoretically, at least three new mutations are needed to
cause resistance to one treatment. Therefore, it is reasonable
to assume for numerical purposes, a 16-variant two-treatment
combination model. The viral mutation graph is simplified to

Fig. 1. Sixteen genotypes and two drug combination. The direction of the
arrows represents the strength of the therapy. That is, therapy 1 has the greatest
influence on strains g1, g5, g9, and g13. Meanwhile, therapy 2 has the greatest
impact on g1, g2, g3, and g4.

be a square grid, as shown in Fig. 1. The wild type genotype
(g1) would be the most prolific variant in the absence of
any drugs. However, it is also the variant that all the drug
combinations have been designed to combat, and therefore
is susceptible to all the therapies. After several mutations,
the highly resistant mutant (g16) is a genotype with low
proliferation rate, but resistant to all the drug therapies.

AIDSinfo [1] usually suggests two nucleotide analogs and
either protease inhibitors or nucleotide reverse transcriptase
inhibitors. The combination of these classes is crucial in con-
trolling the development of resistance. Therefore, we consider
therapies that are composed of reverse transcriptase inhibitors
(that alter the infection constants, kT and kM ) and protease
inhibitors (that affect the viral production constants, pT and
pM ), which are modeled as follows:

ki
T ,σ = kT fiη

T
σ,i

ki
M,σ = kM fiη

M
σ,i

pi
T ,σ = pT fiθ

T
σ,i

pi
M,σ = pM fiθ

M
σ,i

where ησ,i represents the infection efficiency for genotype i
under treatment σ and θσ,i expresses the production efficiency
for the genotype i under treatment σ .

We assume that in the absence of treatment, mutation
reduces the fitness of the genotype. For simplicity, we
use linearly decreasing factors fi , which represent the fit-
ness of the genotype i . The directional effect of the two
drug combinations is shown in Fig. 1, where the arrows
show the efficiency of the drug. Clinical evidence [14] sug-
gests that antiretrovirals are more effective in CD4+T cells
than in macrophages, which is represented by ηT

σ,i > ηM
σ,i and

θT
σ,i > θ M

σ,i .
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B. Switched Linear Approximation

Two-target cell models are more accurate than single-target
cell models. Perelson et al. [15] noted that after the first
rapid phase of decay during the initial one to two weeks
of antiretroviral treatment, plasma virus load declined at a
considerably slower rate. This second phase of viral decay
was attributed to the turnover of a longer lived viral reservoir.
However, the design of switching strategies for the full-order
nonlinear model (2) can be very demanding. Under normal
treatment circumstances, typical clinical data suggest that
the macrophage and CD4+T cell counts are approximately
constant [15]. This assumption allows us to approximate the
dynamics by a switched linear system

Ṫ ∗
i = ki

T ,σ T Vi − δT ∗ T ∗
i +

n∑

j=1

μmi, j V j T

Ṁ∗
i = ki

M,σ MVi − δM∗ M∗
i +

n∑

j=1

μmi, j V j M

V̇i = pi
T ,σ T ∗

i + pi
M,σ M∗

i − δV Vi (3)

where T and M are treated as approximately constant.
System (3) can be rewritten as follows:

ẋ =

⎡

⎢⎢⎢⎣

�1,σ 0 . . . 0
0 �2,σ . . . 0
...

. . .
...

0 0 . . . �n,σ

⎤

⎥⎥⎥⎦ x + μMu x (4)

where x ′ = [T ∗
1 , M∗

1 , V1, . . . , T ∗
n , M∗

n , Vn], � j,σ is given by

� j,σ =
⎡

⎣
−δT ∗ 0 ki

T ,σ T
0 −δM∗ ki

M,σ M
pi

T ,σ pi
M,σ −δV

⎤

⎦

and the mutation matrix has the following form (where ⊗
denotes the Kronecker product):

Mu = [
mi, j

] ⊗
⎡

⎣
0 0 T
0 0 M
0 0 0

⎤

⎦.

With the previous discussion, we consider the total viral load
VT as our cost function, this can be rewritten as follows:

J := c′x(t f ) (5)

where c = [0, 0, 1, . . . , 0, 0, 1] and t f is an appropriate final
time. We choose the final time because our observation is
that the final escape of the highly resistant mutant is at an
exponential rate, largely independent of treatment selection.
Therefore, the total viral load at a far distant time is taken as
an indirect indicator for the duration of viral suppression.

III. SWITCHED LINEAR CONTROL

The following positive switched linear system on a finite
time interval is considered:

ẋ(t) = Aσ(t)x(t), x(0) = x0 (6)

where t ≥ 0, Rn+ is the set of nonnegative real numbers,
x(t) ∈ Rn+ is the state variable vector, σ(t) is the switching

signal, x0 ∈ Rn+ is the initial condition, and Ai belongs to a set
of Metzler matrices {A1, . . . , AN }. The cost functional to be
minimized over all admissible switching sequences is given by

J (x0, x, σ ) =
∫ t f

0
q ′
σ(τ)x(t)dt + c′x(t f ) (7)

where x(t) is a solution of (6) with the switching signal σ(t).
Vectors qi , i = 1, 2, . . . , N are assumed to have nonnegative
entries. The optimal switching signal, the corresponding
trajectory, and the optimal cost functional will be denoted
by σ o(t, x0), xo(t), and J (x0, xo, σ o), respectively. The
Hamiltonian function relative to (6) with cost functional (7)
is given by

H (x, σ, π) = q ′
σ(t)x(t) + π(t)′ Aσ(t)x(t). (8)

The optimal system for (6) and cost (7) was addressed in
[7] and calls for extremal (optimal candidates) solving the
Pontryagin equations

ẋ o(t) = Aσ o(t,x0)x
o(t)

−π̇o(t) = A′
σ o(t,x0)

πo(t) + qσ o(t,x0)

σ o(t, x0) = arg min
i=1,...,N

{πo′(t)Ai x
o(t) + q ′

i x
o(t)} (9)

with the boundary conditions xo(0) = x0 and πo(t f ) = c.
Note that the system (9) is a two-point boundary value problem
and cannot be solved using regular integration techniques.

A simpler computable switching rule (11) is able to give
an upper bound on the cost function (7). The strategy is as
follows:

Corollary 1: Let q ∈ Rn+ and c ∈ Rn+ be given, and let
the positive vectors {α1, . . . , αN }, αi ∈ Rn+ satisfy for some
ζ > 0, the modified coupled copositive Lyapunov differential
inequalities

α̇i + A′
iαi + ζ(α j − αi ) + qi ,� 0 i �= j = 1, . . . , N (10)

with final condition αi (t f ) = c, ∀ i . Then, the switching rule

σ(x(t)) = arg min
i=1,...,N

α′
i (t)x(t) (11)

is such that
∫ t f

0
q ′
σ(τ)x(t)dt + c′x(t) ≤ min

i=1,...,N
α′

i (0)x0. (12)

Proof: The proof can be found in [7].
The parameter ζ can be easily optimized yielding in advance
a quantitative evaluation of the possibility of viral mitigation
through intelligent switching.

A. MPC

MPC involves solving an online finite horizon open-loop
optimal control problem controls [16], [17]. MPC is based
on the measurements obtained at time t . The controller then
predicts the future dynamic behavior of the system over a
prediction horizon Tp and computes an open-loop optimal
control problem with control horizon Tc, to generate both
current and future predicted control signals. Due to distur-
bances, measurement noise and model-plant mismatch, the
true system behavior is different from the predicted one.
To incorporate a feedback mechanism, only the first step
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of the optimal control sequence is implemented. When the
next measurement becomes available the whole procedure—
prediction and optimization—is repeated to find a new input
function with the control and prediction horizons moving
forward. Further details of MPC for switched systems can be
found in [18] and [19].

IV. SIMULATION RESULTS

For simulation purposes, we consider the recommendations
provided by AIDSinfo [1], which suggests altering therapy
with virologic failure as follows.

1) Switch on Virologic Failure: Introduce a new regimen
if there is detectable viremia (HIV RNA >1000
copies/mL) and drug-resistant genotype identified.

We also consider SWATCH treatment [20], [21]. The ratio-
nale behind this strategy is that one could preempt virologic
rebound and reduce accumulating drug-resistant genotypes by
alternating treatments. This strategy is as follows.

1) Swatch: Alternate between two regimens every three
months while viral load is suppressed.

The outcome in [22] showed similar side effects between
the switch on virological failure and SWATCH strategies.
Therefore, we assume there are no serious side effects due
to rapid switching between multiple regimens. To simulate
HIV dynamics, we consider the model (2), further details of
the model and parameters values can be obtained in [13].
AIDSinfo [1] recommends antiretroviral therapy for patients
with CD4+T counts between 350 and 500 cells/mm3. There-
fore, in our test scenario, we introduce treatment after four
years postinfection.

Fig. 2 shows the performance of the switch on virologic
failure and SWATCH strategies. On the one hand, switch
on virologic failure provides a fast recovery in CD4+T
cells counts and a sharp drop in viral load to undetectable
levels, consistent with clinical observations [1]. Before the first
virologic failure, clinical markers satisfy the levels required for
healthy immunological responses (CD4+T ≥ 500 cells/mm3).
Note in Fig. 2 how the first virologic failure is presented after
10 years. To avoid the collapse of CD4+T cell counts, the
introduction of the second therapy is necessary. However, the
persistent low-level viremia and long-term reservoirs causes
a second virologic failure after three years [23]. Therefore,
the final time before the final viral escape is approximately
17 years after initial infection.

These results are consistent with the clinical observations
in [23], Sungkanuparph et al. reported that the median time
to failure was 68.4 months for patients with persistence
low viremia (PLV; 51–1000 copies/mL for at least three
months) and more than 72 months for patients without PLV.
Sungkanuparph et al. [23] suggested that PLV is associated
with virologic failure. That is, patients with a PLV >400
copies/mL and a history of HAART experience are more likely
to experience virologic failure.

On the other hand, simulation results for the SWATCH
strategy do not present virologic failure for approximately
37 years. In addition, Fig. 2 shows a normal range of
CD4+T cell counts (500–1500 cells/mm3) during SWATCH.

Fig. 2. Switch on virologic failure and SWATCH treatments. (a) CD4+T
cells. (b) Viral load. (c) Genotype profile for SWATCH.

Thus, with this example, simulations results suggest that
proactive switching (SWATCH) could provide larger time
scales to preserve normal CD4+T cell levels in patients with
HIV than the switch on virologic failure strategy.
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In Fig. 2, we can observe the dynamics of the most
representative genotypes during SWATCH. The wild type (g1)
is suppressed by both the therapies, yielding a strong reduction
of this genotype. Remarkably, the final viral escape is not due
to the highly resistant genotype (g16) as would be expected.
Instead, periodic oscillation promotes other fitter genotypes
(g4 and g14) to escape earlier the effects of therapies.

A. Switched Linear Model-Based Strategies

Laboratory tests perform during patient visits can be used to
stage HIV disease and assist in the selection of drug regimens
[1], these are genotypic resistance testing, CD4+T counts, and
viral load. Note that genotypic resistance testing has helped
physicians to optimize the management of patients infected
with drug-resistant HIV [24]. Then, the output for the system
(2) could be written in the following vector form:

y(t) =
[

y1(t)
y2(t)

]
=

[
T (t)

V1(t) . . . Vn(t)

]
. (13)

Drug treatments are introduced at fourth-year postinfection
for a period of six years. We consider frequent patient visits
to the hospital once a month, however, treatment regimens can
be switched only every three months [22]. Macrophage counts
are considered constant (700 cells/mm3). CD4+T cell counts
serve to update the switched linear model (3).

Remark 2: The control strategies proposed in this section
could be impractical due to common implementation issues
in biomedical problems: incomplete state measurement, irreg-
ularity of measurements, noise in observations, questionable
predictive power of models, and so on. To achieve a more
realistic simulation, we use a Luenberger observer based on
switched linear systems (3) to estimate the infected cells
variables (T ∗

i , M∗
i ) from the nonlinear model (2). The switched

observer is as follows:

˙̂x(t) = Aσ(t)x̂(t) + Kσ(t)(y2(t) − ŷ2(t)) (14)

where x̂ is the state estimated vector, Kσ(t) are the observer
gains, and ŷ2(t) is the estimated output vector for the genotype
distribution. Kσ(t) is an adaptation to positive systems based
on the algorithms provided in [25]. CD4+T cell counts serve
for updating the switched linear system (3).

We show the applicability of the proposed strategies based
on the following limitations: an observer based on the reduced
model (3), constant counts of macrophages, and infrequent
samples provided from the nonlinear model (2). Note that since
real macrophage counts are varying significantly in the non-
linear model (2), we may assume that the proposed strategies
provide certain robustness to incomplete measurements.

The following strategies based on the switched linear
model (3) were implemented, as shown in Fig. 3.

1) Costate Control: Compute the switching trajectory for
the interval [0, t f ] with the optimal switched linear
system (9). Then, using the trajectory of π(t) and the
estimations of the observer (14), we compute online the
switching signal σ at time t .

2) Guaranteed Cost Control: Compute the switching tra-
jectory with (10) for the interval [0, t f ]. Then, using the

Fig. 3. Control scheme.

TABLE I

SIMULATION RESULTS AFTER SIX YEARS OF HAART

trajectory of α(t) and the estimations of the observer
(14), we compute σ at time t .

3) MPC: Compute the switching trajectory using the sys-
tem (4) and update with the estimations of the observer
(14) as it described in Section III-A, we consider a
prediction horizon of one year.

Simulation results in Table I reveal not only that proactive
switching strategies may outperform the switched on virologic
failure, but also that the proposed switched strategies may
provide better results than SWATCH treatment. Note that
the costate control gives an optimal trajectory for the linear
system, which does not guarantee optimality for the nonlinear
case. MPC exhibits much less viral load (≤50 copies/mL) and
the highest CD4+T cell counts at the end of the treatment
compared with the other strategies.

Proactive switching appears to be important, nevertheless
this does not imply that therapies should alternate permanently,
see Fig. 4. For this example, MPC suggests that therapy 1
should be maintained for one year, then alternation between
treatments will promote undetectable levels in the viral load.
This example provides the insight that the alternation of
treatments should be design depending on the stage of the
infection and genotype distribution. High frequency in the
switching also minimizes somewhat the viral load, however,
this could promote bad drug adherence and health risks in
patients due to drug toxicity.

Observer estimations during MPC strategy are shown in
Fig. 4. Even though only one measurement per month and con-
stant counts for macrophages are considered, the observer (14)
provided somewhat good estimations of infected cells. Fig. 4
also shows that MPC switching inhibits quickly those cells
infected with the wild type (g1), whereas the other genotypes
are kept under very low levels (≤0.1 cell/mm3). As the therapy
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Fig. 4. Treatment scheduling based on MPC using the switched linear model
(3) and observer estimations (14). Solid lines: the dynamics of the nonlinear
model (2). Dashed lines: the respective estimations.

used was not changed for the first year, the appearance of the
genotype resistant to therapy 1 (g4) was observed promoting
infection between CD4+T cells and macrophages. However,
MPC adequately controls the genotype (g4) alternating almost
periodically between regimens.

Model-based strategies may provide good result with
undetectable levels of virus and high CD4+T cell counts.
These results suggest that alternating between treatments,
genotypic resistance testing, and frequent visits with the
practitioner may be clinically relevant to adequately extend
the time to viral escape.

V. CONCLUSION

We applied different control strategies based on a switched
linear system to a nonlinear mutation model. These results
suggest that proactive switching may be important to extend
the time to viral escape. The MPC technique showed the best
performance.

Further work is needed to have more detailed models, to test
the conclusions under a range of different parameter values and
uncertainties, and for more realistic mutation graph models.
Moreover, an assessment of the extra costs inherent in the
strategy (for example, the additional measurements required)
versus the potential benefits is needed.

This brief is a step forward to propose alternative strategies
in HIV treatment and helps to explain what further improve-
ments might be possible. The strategy of alternating therapy
merits further investigation.
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