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a b s t r a c t

This work is motivated by the drug therapy scheduling problem in HIV infection. Using simplified
switched linear system models of HIV mutation and treatment with certain class of symmetry and finite
horizon cost functions, we demonstrate that the optimal state and costate trajectories lie on a sliding
surface where infinitely fast switching may occur. Results suggest that in the absence of other practical
constraints, switching rapidly between therapies is relevant. Simulations show the potential benefits of a
proactive switching strategy to minimize viral load and delay the emergence of resistant mutant viruses.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Highly active antiretroviral therapies (HAARTs) provide a rapid
drop in plasma viral load with a large reduction of infected cells
in patients with HIV infection. Even though long periods of HAART
are provided, latently infected cells are still detectable. Therefore,
cellular reservoirs may contribute to HIV persistence promoting
the emergence of resistant mutants (Eisele & Siliciano, 2012).

In the recent treatment guidelines for HIV infection (AIDSinfo,
2011), clinicians did not achieve a consensus on the optimal time
to change therapy in the event of virological failure (inability to
maintainHIVRNA levels less than 50 copies/ml underHAART treat-
ment). A widely accepted strategy (which we refer to as ‘‘switch
on virological failure’’) is to continue the current therapy until the
viral load exceeds a fixed level (e.g. 1000–500 copies/ml). Using a
mathematical approach D’Amato, DAquila, and Wein (1998) pro-
posed that alternating between therapies may delay the emer-
gence of resistantmutant viruses. A preliminary clinical evaluation
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of proactive switchingwas performed inMartinez-Cajas andWain-
berg (2008). In this initial trial alternating regimens appeared to
outperform virological failure based treatment. Therefore switch-
ing between treatments may be crucial to minimize the risk of re-
sistance (Craig & Xia, 2005; Luo, Piovoso, Martinez-Picado, & Zu-
rakowski, 2011; Ouattara, Mhawej, & Moog, 2008). Under several
simplifying assumptions, Hernandez-Vargas, Colaneri, Middleton,
and Blanchini (2010) expressed the drug treatment scheduling
problem of HIV infection as an optimal control application for a
specific class of autonomous positive switched systems of the fol-
lowing form:

ΣA : ẋ(t) = Aσ(x(t))x(t), x(0) = x0 (1)

where σ : Rn
+

→ I = {1, . . . ,N} denotes the treatment selection
and Aσ is a family of n × n matrices. The system (1) is positive if
the non-negative orthant is positively invariant for any switching
signal. Positivity is well known to be equivalent to all matrices Aσ

being Metzler, that is, aij ≥ 0 for any i ≠ j (Farina & Rinaldi, 2000).
Optimal control of hybrid systems has been widely studied

(Cassandras, Pepyne, &Wardi, 2001; Dmitruk & Kaganovich, 2008,
2011; Spinelli, Bolzern, & Colaneri, 2006). The problem studied
in this paper is closely related to the variational approach to
the stability of switched systems previous developed by Boscain
(2002), Margaliot (2006) and Rapoport (1996). We provide an
analytic solution for a particular class of switched systems using
sufficient conditions via the necessary conditions based on the
Pontryagin principle. For simplicity no constraints or penalty
terms are imposed on the switching. The cost functional is in the
following form:

J := c ′x(tf ) (2)
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where c is a strictly positive vector. Note that this final timepenalty
is motivated by the observation that frequently the final viral
escape is at an exponential rate that is largely independent of the
treatment selection. Thus, the terminal cost (2) is a surrogate for
delaying the escape time.

The paper is organized as follows: optimal control for switched
systems is reviewed in Section 2. We apply these results to
mutating HIV infection models under drug therapy in Section 3.
Simulations are given in Section 4 followed by conclusions and
future work in Section 5.

2. Optimal control problem

Consider the switched system (1) of dimension n, with
σ(t) ∈ {1, 2, . . . ,N} and the cost (2). When dealing with switched
systems we can encounter sliding trajectories, i.e. infinite fre-
quency switching ofσ(t). To include sliding trajectories,we embed
the switched system in the larger class described by

ẋ(t) =

N
i=1

ui(t)Aix(t) (3)

with u(t) ∈ U :=


u : ui ≥ 0, ∀i;

N
i=1 ui = 1


the unit simplex.

Remark 1. Clearly by construction the system (3) includes the
system (1). It may be that for some t , u(t) is not a vertex of
the simplex, and there is no directly equivalent σ(t). However
(for example Bai & Yang, 2007), note that the set of possible
trajectories of (1) are dense in the set of trajectories generated by
(3). Therefore, extending the concept of valid switching signals to
sliding modes based on the appropriate differential inclusions, we
consider optimal control of the system (3). For further details of
the related viscous solutions of differential equations and optimal
control of differential inclusions see Bardi and Capuzzo-Dolcetta
(2008) and Brandi and Salvadori (1998), respectively. The role of
slidingmodes (singular control) in optimization problems in terms
of finite time convergence to the sliding surface is emphasized in
McDonald (2008). �

Definition 1. A triple uo(t) : [0, tf ] × U, xo(t), π o(t), that satisfies
(for almost all t) the system of equations:

ẋo(t) =

N
i=1

uo
i (t)Aixo(t) (4)

−π̇ o(t) =

N
i=1

uo
i (t)A

′

iπ
o(t) (5)

uo(t) ∈ argmin
u∈U


π o′

(t)
N
i=1

uiAixo(t)


(6)

with the boundary conditions xo(0) = x0 and π o(tf ) = c , is called
a Pontryagin solution for the optimal control problem.

Theorem 1. Assume that there exists a unique Pontryagin solution
(uo, xo, π o) for the optimal control defined by system (3) and cost (2).
Then uo(t) is an optimal control signal relative to x0 and the value of
the optimal cost functional is π o′(0)x0.

Proof. Write the Hamiltonian function

H(x, u, π) = π(t)′
N
i=1

uiAix(t)

and notice that π̇(t) = −


∂H
∂x

′
= −

N
i=1 ui(t)A′

iπ(t), ẋ(t) =
∂H
∂π

′
=

N
i=1 ui(t)Aix(t). Moreover, the transversal conditions are
satisfied and for all u ∈ U:

H(xo, uo, π o) ≤ H(xo, u, π o).

Hence, in view of the Pontryagin principle, the triple (xo, π o, uo)
satisfies the necessary conditions for optimality. Optimality
follows from the assumed uniqueness of the Pontryagin triple, see
e.g. Bressan and Piccoli (2007, Theorem 7.1.1). �

Remark 2. For almost all t , the scalar function v(x, t) = π o(t)′x
satisfies:

0 =
∂v

∂t
(xo(t), t) + min

u
H


xo(t), u,

∂v

∂x
(xo(t), t)′


with the boundary condition

v(xo(tf ), tf ) = π o(tf )′xo(tf ) = c ′xo(tf ).

This is however not enough to guarantee that any Pontryagin solu-
tion is also optimal, even though no counterexample for switched
linear positive systems with positive linear cost has been worked
out in the literature. Besides uniqueness, another sufficient condi-
tion ensuring optimality of a Pontryagin solution is the convexity
of the functional c ′x(tf )with respect to u ∈ U. These topics will be
the subject of future work. �

Note that if uo(t) lies at a vertex of U, then an admissible switching
signals (i.e. signals σ(t) ∈ {1, 2, . . . ,N} for almost all t), σ o(t) can
be constructed, see Spinelli et al. (2006), as follows:

ẋo(t) = Aσ o(t,x0)x
o(t)

−π̇ o(t) = A′

σ o(t,x0)π
o(t)

σ o(t, x0) = argmin
i∈I

{π o′
(t)Aixo(t)}

with the boundary conditions xo(0) = x0, π o(tf ) = c , and
J(x0, xo, σ o) = π o′(0)x0.

3. Optimal therapy scheduling: special cases

Simulations and clinical data suggest that once the patient is
using HAART and until virological failure, macrophage and CD4+T
cell counts are approximately constant (Perelson & Nelson, 1999).
Under this assumption, most nonlinear HIV models (Hernandez-
Vargas & Middleton, 2013) are rendered linear. For simplicity, we
use the linear model proposed in Middleton, Colaneri, Hernandez-
Vargas, and Blanchini (2010) that includes n different viral
genotypes,with viral populations, xi : i = 1, . . . , n; andN different
possible drug therapies that can be administered, represented by
σ(t) ∈ {1, . . . ,N}. The viral dynamics are represented by the
following simplified equation:

ẋ(t) =

Rσ(t) − δV I


x(t) + µMux(t) (7)

where Mu := [mij] and Rσ(t) := diag{ρi,σ (t)}. ρi,σ (t) is the
replication rate for viral genotype (i) and therapy combination σ ,
µ represents the mutation rate, δV is the viral clearance andmi,j ∈

{0, 1} represents the genetic connections between genotypes, that
is,mi,j = 1 if and only if it is possible for genotype j to mutate into
genotype i.

Motivated by the HIV treatment application, we provide solu-
tions based on the Pontryagin principle for particular subclasses of
the model (7). These subclasses are restrict to N = 2, that means
there are only two available treatments. In this case, the optimal
control (6) may be a sliding mode when the decision variable γ (t)
vanishes on a non-trivial interval, where:

γ (t) := π ′(t)(A1 − A2)x(t). (8)
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3.1. Invariant subspaces

One problem of interest is when x and π evolve on a particular
invariant subspace as in the lemma below.

Lemma 1. Consider the dynamic system (1) with initial condition
x(0) = x0, N = 2 and cost function J = c ′x(tf ). Suppose there
exist Aα := αA1 + (1 − α)A2 (α ∈ (0, 1)); and tall matrices
vx, wx, vπ , wπ ∈ Rn×m (for any m ≤ n) such that:

i. v′
x is a left invariant of Aα;

ii. v′
xx0 = 0;

iii. vπ is a right invariant of Aα;
iv. c ′vπ = 0; and
v. A1 − A2 = wxv

′
x + vπw′

π .

Then there exists a Pontryagin solution over t ∈ [0, tf ] that is a sliding
mode.

Proof. Our claim is that:

x(t) = eAα tx0;

π(t) = eA
′
α(tf −t)c ′

with the equivalent control u1(t) = α, u2(t) = (1 − α), satisfies
the requirements of Definition 1. Clearly this is a valid solution
to the state and costate equations and it remains to show that it
satisfies the restrictions on γ (t). However, because of the invariant
subspace assumptions, it is always true that the state lives in
the invariant subspace v′

xx(t) = 0. Similarly, the costate always
evolveswithin the invariant subspaceπ(t)′vπ = 0. Fromcondition
(v) and (8), γ (t) = 0 : ∀t ∈ [0, tf ]. �

3.2. Generalized symmetry

An important case where the invariant subspace assumptions
of Lemma 1 applies is when a particular kind of symmetry holds.
In fact, the result applies also to a certain generalization of this
symmetry as we shall see below. To this end, we first introduce
a (generalized) transposition assumption.

Definition 2. A matrix T ∈ Rn×n is called a (generalized) transpo-
sition if there exists a matrix v ∈ Rn×m such that:

T = I − vv′
; and (9)

v′v = kI for some k > 1. (10)

Note, for example, that with k = 2 in Definition 2, T is precisely a
transposition with T 2

= I .

Assumption 1. The matrix A2 may be obtained as a (generalized)
transposition of A1, namely, there exists a transposition T such
that:

A2 = TA1T . (11)

The following lemma shows how this assumption may be used to
construct an invariant subspace.

Lemma 2. Under Assumption 1, v′ is a basis for a left invariant
subspace of Aα = αA1 + (1−α)A2; in particular v′Aα = α(v′A1v)v′

where α =
k−1
k .

Proof. Using (11) we may rewrite Aα as

Aα = αA1 + (1 − α)TA1T .

Substituting (9) in Aα we obtain

Aα = αA1 + (1 − α)(A1 − A1vv′
− vv′A1 + vv′A1vv′)
multiplying v′ by the left, and using (10), we have

v′Aα = αv′A1 + (1 − α)(k − 1)(v′A1vv′
− v′A1)

then using α =
k−1
k , we obtain

v′Aα = α(v′A1v)v′. �

We now extend this result to show how it may be used to find
optimal switching controls.

Theorem 2. Under the following conditions:

i. Assumption 1;
ii. The initial conditions and cost satisfy v′x0 = 0 and v′c = 0, with

v as in Definition 2; and
iii. A1 and A2 are symmetric;

Then a Pontryagin solution is given by the trajectory along the plane
v′x(t) = 0 with dynamical matrix Aα .

Proof. The proof follows directly fromLemmas 1 and 2 and the fact
that the left and right invariant subspaces are equivalent for the
symmetric matrix Aα . Condition (v) of Lemma 1 can be established
as follows:

A1 − A2 = A1 − (I − vv′)A1(I − vv′)

= v


v′A1 −

1
2
v′A1vv′


+


A1v −

1
2
vv′A1v


v′

= vw′
+ wv′

where w = A1v −
1
2vv′A1v. �

Note that as well as the matrix version of symmetry, A′

1 = A1,
there is also a permutation symmetry here. In particular, T is now
idempotent, and the dynamics under the two treatment options
are identical apart from relabelling of some of the state variables.
Furthermore, the conditions that the initial conditions and costate
start on the invariant subspace are equivalent to equal weighting
and initial conditions on state variables that are transposed under
T . We therefore see that certain kinds of symmetric problems
generically admit Pontryagin solutions that are a sliding mode.
Next we look at a specific class of systems for which this solution
is optimal.

3.3. General solution for a 4 variant model

Consider a system with 4 states, and two treatment options,
N = 2 of the following structure, see Middleton et al. (2010).

Aσ =

λ1 0 0 0
0 λ2σ 0 0
0 0 λ3σ 0
0 0 0 λ4

 + µ

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 .

Remark 3. In reality, HIV treatments are a combination of multi-
ple (usually 3 or more) individual drugs, each of which has inde-
pendent susceptibility to viral mutation. Even if considering only 2
classes of treatment, a full order model for this would have up to
2(3×2)

= 64 (or possibly more) viral strains. The 4 variant model is
a significant simplification of complex mutation dynamics in real
HIV behavior that is more amenable to analysis. �

Assumption 2. λ21 > 0, λ22 < 0, λ31 < 0, λ32 > 0.

In addition, we make the following symmetry assumption:

Assumption 3. λ21 − λ22 + λ31 − λ32 = 0.
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Using Assumptions 2 and 3, 1A = A1 − A2 can be rewritten as
follows

1A = (λ21 − λ22)J̄

where J̄ = diag (0, 1, −1, 0). Since λ21 − λ22 > 0, we define
the normalized decision function γ̄ (t) = π(t)′ J̄x(t), that takes the
form

γ̄ (t) = π2(t)[x2(t) − x3(t)] + x3(t)[π2(t) − π3(t)]. (12)

Moreover, from the structure of A1 and A2 it is possible to conclude
that

˙̄γ (t) = µ[π2(t) − π3(t)][x1(t) + x4(t)]

− µ[x2(t) − x3(t)][π1(t) + π4(t)]. (13)

The following lemma, which can be proven directly from (12) and
Assumption 2 is useful to characterize the optimal solution. In the
following the sign function Sgn[·] is introduced, i.e. Sgn[v] = 1 if
v > 0, Sgn[v] = −1 if v < 0 and Sgn[v] = 0 if v = 0.

Lemma 3. Under Assumption 2 the following conditions hold for any
Pontryagin solution, x(t), π(t), u(t):
Sgn[x2(t) − x3(t)] = Sgn[π2(t) − π3(t)]


H⇒


Sgn[γ̄ (t)] = Sgn[x2(t) − x3(t)]


Sgn[x2(t) − x3(t)] = −Sgn[π2(t) − π3(t)]


H⇒


Sgn[ ˙̄γ (t)] = Sgn[π2(t) − π3(t)]


Sgn[ẋ2(t) − ẋ3(t)] = Sgn[α − u1(t)]
Sgn[π̇2(t) − π̇3(t)] = Sgn[u1(t) − α].

To characterize the sliding modes, it is necessary to find a suitable
convex combination of the matrices A1, A2 as follows:

Lemma 4. Consider any time interval, [t1, t2] and suppose that
x2(t1) = x3(t1), π2(t2) = π3(t2). Under Assumption 3, there is a
Pontryagin solution over [t1, t2] such that x2(t) = x3(t), π2(t) =

π3(t) with α =
λ32−λ22

λ32−λ22+λ21−λ31
.

Proof. Given the structure of J̄ , this can clearly be written as J̄ =

vw′
+ wv′ where w =

1
2 [0, 1, 1, 0]

′ and v = [0, 1, −1, 0]′. The
remainder of the proof follows that of Lemma 1. �

For the future proof of optimality, we establish positive invariance
of certain regions for any Pontryagin solutions to the optimal
control problem.

Lemma 5. With respect to any Pontryagin solution, and subject
to Assumptions 2 and 3, the following regions are positively invariant:

R+1 := {(x, π) : γ̄ > 0, x2 − x3 ≤ 0, π2 − π3 ≥ 0}
R+2 := {(x, π) : γ̄ < 0, x2 − x3 ≥ 0, π2 − π3 ≤ 0} .

Proof. We prove this result for R+1 only as the other case follows
similarly. Note that γ̄ > 0 implies that u1 = 0 and therefore

ẋ2 − ẋ3 = λ22x2 − λ32x3 < 0,
π̇2 − π̇3 = −λ22π2 + λ32π3 > 0.

Furthermore, from (13), in this region ˙̄γ ≥ 0. �

Now define k1 = argmin{x2(0), x3(0)}, k2 = argmin{c2, c3}, and

T1 = argmin
t≥0

: [0 1 − 1 0]eAk1 tx(0) = 0,

T2 = argmax
t≤tf

: [0 1 − 1 0]e−Ak2 (t−tf )c = 0.
Notice that, thanks to the definition of k1, k2 and the monotonicity
conditions of x2(t)−x3(t),π2(t)−π3(t), the time instants T1 and T2
are well defined and unique. Clearly, by definition x2(T1) = x3(T1)
and π(T2) = π3(T2). We are now in the position to provide the
main result for the four variant model (recall that σ = 1 means
u1 = 1, σ = 2 means u1 = 0 and a sliding mode corresponds to
the singular arc associated with u1 = α).

Theorem 3 (Long Horizon Case). Let Assumptions 2 and 3 be met, let
µ > 0 and assume that T1 ≤ T2. Then, the optimal control associated
with the initial state x(0) and cost c ′x(tf ) is given by σ(t) = k1, t ∈

[0, T1] and σ(t) = k2, t ∈ [T2, tf ]. For t ∈ [T1, T2], the optimal
control is given by the trajectory along the plane x2 = x3, with
dynamical matrix Aα = αA1 + (1−α)A2 and α as given in Lemma 2.

Proof. We first define our candidate optimal solution triple as
follows:

u1(t) = k1, t ∈ [0, T1]
u1(t) = α, t ∈ [T1, T2]
u1(t) = k2, t ∈ [T2, tf ]

x(t) = eAk1 tx(0), t ∈ [0, T1]
x(t) = eAα(t−T1)x(T1), t ∈ [T1, T2]
x(t) = eAk2 (t−T2)x(T2), t ∈ [T2, tf ]

π(t) = eAk2 (tf −t)c, t ∈ [T2, tf ]

π(t) = eAα(T2−t)π(T2), t ∈ [T1, T2]
π(t) = eAk1 (T1−t)π(T1), t ∈ [0, T1].

Next, consider the time interval t ∈ [T1, T2]. By definition, x2(T1) =

x3(T1) and π2(T2) = π3(T2). By Lemma 4, in the interval [T1, T2]
we have x2(t) = x3(t) and π2(t) = π3(t), and therefore the
Pontryagin conditions are satisfied in this interval.

For the remaining two intervals t ∈ [0, T1] (i = 1) and t ∈

[T2, tf ] (i = 2), consider γ̄ (12), and ˙̄γ (13). Now, γ̄ (T1) = γ̄ (T2) =

0 and, for t ∈ [0, T1] or t ∈ [T2, tf ]:

ẋ2(t) − ẋ3(t) = λ2kix2(t) − λ3kix3(t) =


> 0 ki = 1
< 0 ki = 2

π̇2(t) − π̇3(t) = −λ2kiπ2(t) + λ3kiπ3(t) =


< 0 ki = 1
> 0 ki = 2.

This means that, for t ∈ [0, T1], or t ∈ [T2, tf ]:

x2(t) − x3(t) =


< 0 ki = 1
> 0 ki = 2

π2(t) − π3(t) =


> 0 ki = 1
< 0 ki = 2.

Therefore, within either time interval, the sign of ˙̄γ is uniform:

˙̄γ (t) =


> 0 ki = 1
< 0 ki = 2.

Since γ̄ (Ti) = 0 for i = 1, 2 it follows that the sign of γ̄ is uniform
within either time interval, and takes the required sign to satisfy
the Pontryagin conditions.

We now have to show that the proposed Pontryagin solution,
u(t), x(t), π(t) is unique so that optimality follows. We do this by
considering other candidate Pontryagin solutions and producing a
contradiction, thereby establishing that the proposed solution is
optimal.

To this end, consider Figs. 1 and 2, that correspond to the case
x2(0) < x3(0). The case x2(0) = x3(0) can be understood in a
simple way via the same figures with T1 = 0, whereas the case
x2(0) > x3(0) can be obtained by symmetry. Consider also Fig. 5
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Fig. 1. Long horizon with k1 = k2 = 1.

Fig. 2. Long horizon with k1 = 1, k2 = 2.

Fig. 3. Small horizon with k1 = k2 = 1.

Fig. 4. Small horizon with k1 = 1, k2 = 2.

that shows the four orthants in the coordinates x2−x3 andπ2−π3,
labeled in γ̄ and ˙̄γ . Notice also that in the caseµ ≠ 0 the only point
for which γ̄ = 0 and ˙̄γ = 0 is the origin, i.e. x2 = x3 and π2 = π3.
Case (a): π2(0) − π3(0) ≤ 0. Since we have also assumed x2(0) <
x3(0) it follows that γ̄ (0) < 0 and u1(0) = 1. Then initially,
x2(t) − x3(t) increases and π2(t) − π3(t) decreases. Therefore,
there is an initial time interval [0, τ1] wherein γ̄ (t) < 0, π̇2 <
π̇3, and therefore π2(t) < π3(t). These conditions persist unless
we reach x2 = x3. However, at this point we have entered the
positively invariant region R+2. Therefore, in this case, we must
have γ̄ < 0 and π2 < π3 over the entire time interval. However,
this contradicts either: (i) π2(tf ) − π3(tf ) = c2 − c3 (if c2 > c3); or
(ii) if c2 < c3 the long horizon assumption on the existence of T2
which yields π2(T2) = π3(T2).
Case (b):π2(0)−π3(0) ≥ 0, γ̄ (0) > 0. In this case, we start inR+1
and therefore remain in this region. In a similar manner to case (a),
this produces a contradiction with respect to either the final value
of the costate, or the existence of T2.
Case (c): π2(0) − π3(0) > 0, γ̄ (0) ≤ 0. Note that if γ̄ (0) = 0
then at some small time later we are effectively in case (b) and the
contradiction there holds. Therefore γ̄ (t) remains negative until
some t = τ1 > 0. Suppose τ1 < T1, then by the definition of T1,
x2(τ1) < x3(τ1), and therefore to satisfy γ̄ (τ1) = 0 we must have
π2(τ1) > π3(τ1). Then just after t = τ1 we enter R+1 and remain
there, and as in cases (a), (b) this leads to a contradiction. Suppose
instead that τ1 > T1. Then for t ∈ (T1,min{τ1, T2}), it must be true
Fig. 5. Plane x2 − x3 , π2 − π3 .

that x2(t) > x3(t) and γ̄ (t) < 0. This implies that π2(t) < π3(t)
and therefore we are in R+2 and a similar contradiction to before
holds. Therefore, the only case that does not lead to a contradiction
is that γ̄ (t) reaches zero precisely at t = T1, x2(T1) = x3(T1) and
π2(T1) = π3(T1) as in the proposed solution.

By reversing the same logic, we can show that the final time
interval must be of the form postulated, x2(T2) = x3(T2) and
π2(T2) = π3(T2). Finally, as evident fromFig. 5, the only Pontryagin
solution in the interval [T1, T2] with x2(Ti) = x3(Ti) and π2(Ti) =

π3(Ti) is u1(t) = α (thismeans the origin of the plane in Fig. 5). �

Even though in practice the horizon length tf may often be large
enough to guarantee that T1 ≤ T2, for completeness, we shall
consider the small horizon case.

Theorem 4 (Small Horizon Case). Let Assumption (2) be met, assume
µ ≠ 0 and 0 < T2 ≤ T1 < tf . Then, the optimal control associated
with the initial state x(0) and cost c ′x(tf ) is given as follows:

(i) If k1 = k2, then σ(t) = k1, t ∈ [0, tf ],

(ii) otherwise, if k1 ≠ k2, then σ(t) =


k1 : t ∈ [0, T3]
k2 : t ∈ [T3, tf ]


, where

T3 ∈ [T2, T1] is such that for t = T3

g(t) := x(0)′eAk1 (t) J̄e−Ak2 (t−tf )c = 0.

Proof (Outline). The proof follows similar steps of Theorem 3 and
we therefore abbreviate many of the details. We first verify that
the proposed control law satisfies the Pontryagin conditions (3).

Consider case (i) k1 = k2 (see Fig. 3). Also take k1 = 1, with the
other case following by symmetry. Our candidate solutions are

π(t) = eA1(tf −t)c, t ∈ [0, tf ]

x(t) = eA1tx(0), t ∈ [0, tf ]

and for all t , u1(t) = 1. It remains to confirm that this satisfies the
decision condition, (6). Note that by definition of T2, x2(t) − x3(t)
changes sign only at t = T2. Similarly, π2(t) − π3(t) changes sign
only at t = T1. For t ∈ [max{0, T2},min{T1, tf }] both x2(t) − x3(t)
and π2(t) − π3(t) are both negative, and therefore γ̄ (t) < 0 as
required. A further two regions may need to be considered, [0, T2],
[T1, tf ]. In these regions we have ˙̄γ (t) > 0, ˙̄γ (t) < 0 respectively,
and therefore γ̄ (t) < 0 for the entire interval t ∈ [0, tf ].

Now consider case (ii), k1 ≠ k2 (see Fig. 4). We discuss k1 = 1,
k2 = 2 with the other case following similarly. We first show
that T3 exists. Note that g(T2) is negative and g(T1) is positive.
Uniqueness follows since

g ′(t) := x(0)′eA1(t)(A1 J̄ − J̄A2)e−A2(t−tf )c ≥ 0
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where the inequality follows since for our case, (A1 J̄ − J̄A2) is
diagonal and non-negative. Our candidate optimal solution is
therefore

π(t) = eA2(tf −t)c, t ∈ [T3, tf ]

π(t) = eA1(T3−t)eA2(tf −T3)c, t ∈ [0, T3]
x(t) = eA1tx(0), t ∈ [0, T3]
x(t) = eA2(t−T3)eA1T3x(0), t ∈ [T3, tf ]
u1(t) = 1, t ∈ [0, T3)
u1(t) = 2, t ∈ (T3, tf ].

From the definition of T3, the candidate γ̄ (t) swaps sign at t = T3.
We now have to show that the proposed Pontryagin triple is
unique. Note that by the definitions of T1 and T2, for any Pontryagin
solution x2(t) < x3(t) for t ∈ [0, T1) and π2(t) > π3(t) for
t ∈ (T2, tf ].

Now consider three cases. Case (a): π2(0) ≤ π3(0). This then
leads to γ̄ < 0 and therefore π2 − π3 decreases. It can be shown
that this situation persists and therefore there is a contradiction
with the terminal condition, π(tf ) = c. Case (b): π2(0) > π3(0)
and γ̄ (0) > 0. This is part of the set R+1 which is positively
invariant, and yields a valid solution only when tf < T3 < T1. Case
(c): π2(0) > π3(0) and γ̄ (0) < 0. This yields ˙̄γ (0) > 0 and the
solution is as postulated wherein T3 < T1 < tf .

Reversing the argument to work backwards from t = tf , gives
the solution postulated, including possible cases where T3 exists,
but is outside the range (0, tf ). �

Remark 4. Theorem4 implicitly includes caseswhere one ormore
of T1, T2 and T3 are outside the range (0, tf ). �

Remark 5. Suppose µ = 0. Then, the matrices of the system
commute, and existing results (e.g. see Agrachev and Liberzon
(2001) and Margaliot (2007)) can be applied. In our case (diagonal
matrices), it is possible to prove that an optimal control is described
by a single switch of duration

Ts =
1

2(λ21 − λ22)
ln

x3(tf )σ=1

x2(tf )σ=1

where x(tf )σ=1 denotes the state vector at time tf evaluated with
σ = 1. This solution is non-unique, and for symmetric initial
conditions, and under Assumptions 2 and 3, the sliding mode
control, u1(t) = α is also optimal. �

4. Simulation results

HIV treatments are designed to require the accumulation of
three or more resistance mutations before the appearance of a
fully resistant variant. This would give a complex scenario with
a much higher degree of complexity. To illustrate the results of
Section 3, we propose a 4 variant, 2 drug treatment model, with
an initial condition vector x = [103, 5, 0, 10−5

] and a symmetric
cost function weighting as c = [1, 1, 1, 1]′. The viral clearance
rate is δV = 0.24 day−1, which corresponds to a half life of less
than 3 days (Perelson & Nelson, 1999). Notice that other authors
(Huang, Wu, & Acosta, 2010; Luo, Piovoso, Martinez-Picado, &
Zurakowski, 2012; Putter, Heisterkamp, Lange, & De Wolf, 2002)
suggest a slightly faster clearance rate, approximately 1 per day.
Viral mutation rates are of the order of µ = 10−4 (Mansky, 1996).
The various replication rates are described in the Table 1, these
numbers are of course idealized, however the general principles
are based on Hernandez-Vargas et al. (2010). For an optimal
treatment, using Theorem 3, therapy 2 is used for t < T1 = 12.2
days, then therapies alternate with high frequency as illustrated in
Table 1
Symmetric replication rates for viral variants.

Variant Therapy 1 Therapy 2

Wild type (x1) ρ1,1 = 0.05 ρ1,2 = 0.05
Genotype 1 (x2) ρ2,1 = 0.27 ρ2,2 = 0.05
Genotype 2 (x3) ρ3,1 = 0.05 ρ3,2 = 0.27
HR Genotype (x4) ρ4,1 = 0.27 ρ4,2 = 0.27

a

b

c

Fig. 6. Optimal trajectories (a) genotype dynamics (b) adjoint state variables (c)
switching rules.

Fig. 7. Different treatment strategies to mitigate the viral escape.

Fig. 6. The wild type virus is attenuated to undetectable levels (less
than 50 copies/ml). The highly resistant genotype grows slowly
which induces the final viral escape. Fig. 6(b) reveals how the
costate dynamics are similar to the state, but in reverse time.

Remark 6. Optimal trajectories are associated with chattering
switching laws that are of course not realistically applicable for HIV
treatment. However, this theoretical result provides an important
insight since it clarifies when the therapies have to be switched
more frequently in order to better control viral load. In order to
accommodate the need for a lower bound on the commutation
intervals, future works will address the problem of incorporating a
dwell time constraint for the switching signal. �

Using a switch on virological failure strategy, the therapy
is changed after 9 months (when viral load ≥1000 copies/ml).
Therefore, the population of the resistant genotype is large enough
that it that cannot be contained by the second therapy, see Fig. 7.
In contrast, proactive switching may reduce viral load to very low
levels during the whole treatment, 100 copies/ml, promoting a
larger delay in the viral escape. Notice that an open loop alternating
strategy and the optimal control present close performance for this
example. This means that a periodic oscillating strategy might be
effective in postponing viral escape without requiring a detailed
model, high computational time and full state measurements.
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5. Conclusions

For the proposed models of treatment in HIV and simplifying
assumptions in the proliferation rate and the mutation graph, we
show that the optimal control for a class of positive switched
systems is given by the trajectory along the plane v′x(t) = 0
with dynamical matrix Aα . Such behavior suggests that in the
absence of other practical constraints, switching rapidly between
therapies may be desirable. This work provides the speculative
possibility that therapy alternation may sustain viral suppression
to very low levels inhibiting the emergence of resistant mutant
viruses. Further research will include more realistic models and
cost functions that penalize the switching.
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