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a  b  s  t  r  a  c  t

Control  design  for helicopters  is  a complicated  and  challenging  problem  due  to the  strong  inter-couplings
and  nonlinear  uncertainties  in the  system  model.  This  paper  deals  with  the  decentralized  control  problem
for  the  output  trajectory  tracking  in  a Quanser  2 degree  of  freedom  (DOF)  helicopter.  High  order  neural
network  (HONN)  is  an  important  technique  to  approximate  non-linearities  in the  model.  Two  different
discrete-time  schemes  with  a decentralized  structure  are  used.  Neural  backstepping  and  neural  sliding
mode  block  control  techniques  are considered  in  order  to control  pitch  and  yaw  positions.  On  one  hand,
backstepping  control  divides  the  whole  system  into  two  subsystems  which  are  used  to track  the  pitch

and  yaw  references  respectively.  Real  and  virtual  controls  are  approximated  by  HONNs.  On the  other
hand,  block  control  technique  is applied  to  HONNs  which  can  identify  the  system  helicopter  model.
Each  discrete-time  high  order  neural  network  is  trained  on-line  with  an  extended  Kalman  filter  based
algorithm.  Without  the  previous  knowledge  of  the  plant  parameters  neither  its model,  we show  via
simulations  the good  performance  of both  strategies.  The  block  control  technique  presents  slightly  better

 algo
results  than  backstepping

. Introduction

Helicopters have become very popular for short-distance trans-
ortation because of its ability to land and take off in small areas.
elicopters have been adopted for a wide range of services, includ-

ng air-sea rescue, fire fighting, traffic control, tourism among
thers [1].  A helicopter has four flight control inputs; the cyclic,
he collective, the anti-torque pedals, and the throttle. The control
s called the cyclic because it changes the pitch of the rotor blades
yclically. The collective changes the pitch angle of all the main
otor blades collectively and independently of their position. The
nti-torque pedals serve a similar purpose, namely to control the
irection in which the nose of the aircraft is pointed. The throt-
le maintains enough engine power to keep the rotor RPM within
llowable limits in order to keep the rotor producing enough lift for
ight [2].

Helicopter dynamics are highly nonlinear, high cross-coupled,
nstable, and difficult to model [3].  Moreover, identification and

ontrol of a helicopter are complex problems. Identification of the
elicopter model Humudoft CE 150 parameters is described in [4],
here the determination of each parameter requires a specific

∗ Corresponding author.
E-mail addresses: mglez@gdl.cinvestav.mx (M.  Hernandez-Gonzalez),

lmayalanis@gmail.com (A.Y. Alanis), abelardo 81@hotmail.com
E.A. Hernandez-Vargas).

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2012.02.016
rithm.
©  2012  Elsevier  B.V.  All  rights  reserved.

prepared experiment. For this reason, Velagic and Osmic [5] pro-
posed a genetic algorithm for identification of the physical structure
of helicopter systems.

Neural Networks (NNs) can play an important role due to the
fact that they might be used to model nonlinear systems with any
degree of accuracy. This is possible due to the learning and adapta-
tion capabilities of the NNs [6].  Neural structures can be variously
classified, the most relevant of them to the purposes of this work are
High Order Neural Networks (HONNs) and Recurrent High Order
Neural Networks (RHONNs). These offer better results for modeling
and controlling nonlinear systems [7].

Several stable NNs control approaches have been proposed
based on Lyapunov’s stability theory [6,8]. In nonlinear control sys-
tems, radial basis function (RBF) neural networks, high order neural
networks [8],  multilayer neural networks (MNNs) [9] and recurrent
high order neural networks are sort of NNs which have widely been
used [6].

Various training methods for neural networks are suggested
in the literature; among them are the ones based on extended
Kalman filtering (EKF) [8] and the well-known back-propagation
algorithm [10]. Kalman filter (KF) estimates the state of a lin-
ear system with additive state and additive output white noises
[11,12]. For KF-based neural network training method, the NNs

weights become the states to be estimated by the EKF. The EKF
training of neural networks, both feedforward and recurrent ones,
has proved to be reliable and practical for many applications
[13,14].

dx.doi.org/10.1016/j.asoc.2012.02.016
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:mglez@gdl.cinvestav.mx
mailto:almayalanis@gmail.com
mailto:abelardo_81@hotmail.com
dx.doi.org/10.1016/j.asoc.2012.02.016
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Helicopter dynamics are unstable, therefore control techniques
re needed to realize superior performances and high agilities [2,3].

 robust and stable control for a wide azimuth and elevation angles
s proposed by Velagic and Osmic [5] using a fuzzy approach. In
imilar direction, Rios et al. [15] presented a practical design to the
tabilization of a three degrees of freedom helicopter.

However, all these approaches are designed in continuous time,
iscrete-time algorithms are necessary in order to achieve better
erformances. We  study the design of discrete-time neural control
lgorithms applied to a Quanser 2-DOF helicopter for tracking two
eference signals. The first decentralized strategy, discrete-time
ackstepping control, considers that the whole system is divided

nto subsystems and each one of them is presented in the strict
eedback form or can be transformed in it. The idea behind back-
tepping is as follows: if we consider the system description as

 one-step ahead predictor, then we can transform the one-step
head predictors into an equivalent maximum r-step ahead predic-
or which can predict the futures states, the causality contradiction
s avoided by the backstepping controller when it is constructed
ased on the maximum r-step ahead predictor [6].  For the second
trategy, discrete-time sliding mode control, a decentralized con-
rol approach is employed, i.e. the whole system is divided into
ubsystems, each one of them has an input control and an output
ontrol to be controlled. The discrete-time sliding mode control is

 continuous function of the states and does not have the problem
f chattering [16].

The Quanser 2-DOF helicopter model used in this paper is
xplained in detail in Section 3. The model considers four states:
wo states stand for the pitch and yaw position and the remainder
tates are for the pitch and yaw velocities. Two control inputs are
sed to force the output to track two references [17], i.e. an input
oltage pitch and an input voltage yaw.

The paper is organized as follows. We  introduce in Section
 the mathematical preliminaries and the necessary background
f neural networks. The helicopter model and its description
re presented in Section 3. The discrete-time backstepping con-
rol law development and the class of neural network used for
his application are provided in Section 4. Section 5 presents
he discrete-time block control strategy. Simulation results and
omparisons between the controllers are given in Section 6. We
onclude the paper in Section 7.

. Mathematical preliminaries

Throughout this paper, R  denotes the field of real number, R
n

tands for the vector space of all n-tuples of real numbers, R
n×n is

he space of n × n matrices with real entries, and Z
+ denotes the set

f positive natural numbers.
We use k as the sampling step, k ∈ 0 ∪ Z

+, |• | as the absolute
alue and ‖• ‖ as the Euclidean norm for vectors and as any adequate
orm for matrices. To follow a discrete-time approach, we consider
he next nonlinear model;

(k + 1) = f (x) + Bu(k) (1)

here x(k) ∈ R
n is the state of the system, u(k) ∈ R

m is the input con-
rol, f (x) ∈ R

n, B ∈ R
n×m. The system (1) is said to be forced or have

nputs. In contrast the system described without explicit presence
f an input u is said to be unforced. For the design of the controller,
he next stability definitions are introduced;

efinition 1. A subset S ∈ R
n is bounded if there exists r > 0 such

hat |� | ≤ r for all � ∈ S.
efinition 2. The solution of the system (1) is said to be semiglob-
lly uniformly ultimately bounded (SGUUB), if for any  ̋ a compact
ubset of R

n and all �(k0) ∈ ˝,  there exists an � > 0 and a number
(�, �(k0)) such that |�(k) | < � for all k ≥ k0 + N.
ft Computing 12 (2012) 2462–2469 2463

2.1. Discrete-time HONNs

HONNs are networks that utilize higher combination of input
and states. HONNs have impressive computational storage and
learning capabilities. In this work, we  consider the HONN described
by Alanis et al. [8].

 (wi(k), zi(k)) = w�
i (k)Si(z(k)) (2)

Si(z(k)) =
[
si1 (z) si2 (z) . . . siL (z)

]�
(3)

Si(z(k)) =

⎡
⎣∏
j∈I1

[s(zj)]
dj(i1)

∏
j∈I2

[s(zj)]
dj(i2) . . .

∏
j∈IL

[s(zj)]
dj(iL)

⎤
⎦

�

(4)

where
[
z1 z2 · · · zq

]
∈ ˝z ⊂ R

q, q denotes the number of exter-
nal inputs, L denotes the NN node number,   ∈ R, I1, I2, . . . , ILi is
a collection of not ordered subsets of 1, 2, . . .,  q, Si(z) ∈ R

Li , dj(ij)
is a non-negative integer, w ∈ R

Li is an adjustable synaptic weight
vector, and si(zj) is chosen as a hyperbolic tangent function

s(zj) = a tanh(ˇzj) + � (5)

where a, ˇ, and � are constant parameters.

Assumption 1. For a desired function u∗(z) ∈ R, assume there
exists an ideal weight vector w∗

i
∈ R

Li such that the smooth func-
tion u*(z) can be approximated by an ideal NN on a compact set
˝z ⊂ R

q

u∗(z) = w∗�
i S(z) + �z (6)

where �z ∈ R  is the bounded NN approximation error, ‖�z‖ can be
reduced by increasing the number of adjustable weights. The ideal
weight vector w∗

i
is an artificial quantity required for analytical pur-

poses. Assume that this vector exists, but it is an unknown constant
whose estimate is given by wi(k) ∈ R

Li . The estimation error can be
defined as:

w̃i(k) = wi(k) − w∗
i (7)

2.2. Extended Kalman filter

Kalman filter is a set of mathematical equations that provides
an efficient computational (recursive) solution of the least-square
method which estimates the state of a linear system with additive
state and output with noises [9,21].  For KF-based neural network
training, the network weights become the states to be estimated.
In this case, the error between the neural network output and the
measured plant output is considered as additive white noise. The
training goal is to find the optimal weight values which minimize
the predictions error. The on-line EKF-based training algorithm is
described by the following system;

wi(k + 1) = wi(k) + �iKi(k)ei(k)

Ki(k) = Pi(k)Hi(k)Mi(k) i = 1, . . . , r

Pi(k + 1) = Pi(k) − Ki(k)H�
i

(k)Pi(k) + Qi(k)

(8)

with

Mi(k) = [Ri(k) + H�
i

(k)Pi(k)Hi(k)]
−1

ei(k) = xi(k) − �i(k)
(9)

where ei(k) ∈ R  is the respective identification error in each subsys-
tem, Pi(k) ∈ R

Li×Li is the weight estimation error covariance matrix
at step k, wi(k) ∈ R

Li is the weight (state) vector, xi(k) is the ith plant

input control to be approximated by the NN, �i(k) is the ith neu-
ral network virtual control, Ki(k) ∈ R

Li is the Kalman gain vector,
Qi ∈ R

Li×Li is the NN weight estimation noise covariance matrix,
Ri ∈ R  is the error noise covariance, and Hi(k) ∈ R

Li is a vector, in



2464 M. Hernandez-Gonzalez et al. / Applied Soft Computing 12 (2012) 2462–2469

w
c
g

H

w
a
I
a
e

3

m
m
h
t
T
w
p
t

y

w

c

Table 1
Helicopter parameters.

Parameter Value Description

mheli 1.3872 kg Mass of the helicopter
g 9.8  m/s Gravity
lcm 0.186 cm Center-of-mass length along the helicopter
Jeqp 0.0384 kg/m2 Moment of inertia about pitch pivot
Jeqy 0.0432 kg/m2 Moment of inertia about yaw pivot
Kpp 0.204 Nm/V Thrust torque constant acting on pitch axis

from pitch motor
Kpy 0.0068 Nm/V Thrust torque constant acting on pitch axis

from yaw motor
Kyy 0.072 Nm/V Thrust torque constant acting on yaw axis

from yaw motor
Kyp 0.0219 Nm/V Thrust torque constant acting on yaw axis

from pitch motor
Fig. 1. Quanser 2 degree of freedom helicopter.

hich each entry Hij is the derivative of the neural network virtual
ontrol, �i(k), with respect to one neural network weight, wij(k),
iven as follows:

ij(k) =
[
∂�i(k)
∂wij(k)

]�
(10)

here i = i, . . .,  r and j = 1, . . .,  Li. Usually Pi and Qi are initialized
s diagonal matrices, with entries Pi(0) and Qi(0), respectively.
t is important to remark that Hi(k), Ki(k) and Pi(k) to the EKF
re bounded, i.e. ‖H(k)‖ ≤ H, ‖K(k)‖ ≤ K, ‖P(k)‖ ≤ P, for a detailed
xplanation of this fact see [10].

. Description of the system

The Quanser 2-DOF helicopter consists of a helicopter model
ounted on a fixed base with two propellers that is driven by DC
otors, see Fig. 1. The front propeller controls the elevation of the

elicopter nose about the pitch axis, and the back propeller controls
he side to side motions of the helicopter about the yaw axis [17].
he model is described in continuous-time, however in the present
ork a discrete-time approach is considered. Therefore, we pro-
ose below the discretization of the helicopter model using Euler
echnique [18]:

x1(k + 1) = x1(k) + x3(k)T

x2(k + 1) = x2(k) + x4(k)T

x3(k + 1) = x3(k) − c1 cos(x1(k))T − c2x3(k)T

−c3 sin(x1(k)) cos(x1(k))x2
4(k)T + c4TVmp + c5TVmy(k)

x4(k + 1) = x4(k) − c6x4(k)T + c7 sin(x1(k)) cos(x1(k))x3(k)x4(k)T

+c8TVmp + c9TVmy(k).
(11)

The output to be controlled is given by:

(k) =
[
x1(k)
x2(k)

]
(12)
here the parameters ci, i = 1, . . .,  9 in (11) are given by:

1 = mheliglcm
Jeqp + mhelil

2
cm

, c2 = Bp

Jeqp + mhelil
2
cm

, c3 = mhelil
2
cm

Jeqp + mhelil
2
cm
Bp 0.800 N/V Equivalent viscous damping about pitch axis
By 0.318 N/V Equivalent viscous damping about yaw axis
T 0.0001 seg Sampling period

c4 = Kpp

Jeqp + mhelil
2
cm

, c5 = Kpy

Jeqp + mhelil
2
cm

,

c6 = By

Jeqy + mhelil
2
cmcos2(x1(k))

, c7 = 2mhelil2cm
Jeqy + mhelil

2
cmcos2(x1(k))

,

c8 = Kyp

Jeqy + mhelil
2
cmcos2(x1(k))

, c9 = Kyy

Jeqy + mhelil
2
cmcos2(x1(k))

and x1(k) represents the angle in pitch axis and x2(k) in the yaw
axis. The pitch position is defined positive when the nose of the
helicopter goes up, and the yaw position is defined positive for a
clockwise rotation. x3(k) is the pitch velocity and x4(k) is the yaw
velocity. The input pitch motor voltage is Vmp(k) and Vmy is the input
yaw motor voltage. Parameter descriptions and values are shown
in Table 1.

4. Discrete-time backstepping control law development

It is supposed that the system in (1) can be represented as r
nonlinear subsystems [28]:

xj1(k + 1) = f j1(xj1(k)) + bj1x
j
2(k) + �1k

xj2(k + 1) = f j2(xj2(k)) + bj2x
j
3(k) + �2k

...
xj
i
(k + 1) = f j

i
(xj
i
(k)) + bj

i
xj
i+1(k) + �1k

...
xjr(k + 1) = f jr (x

j
r(k)) + bjru

j(k) + �rk

(13)

where xj
i
(k) = [xj1(k) xj2(k) . . . xj

i
(k)], i = 1, . . .,  r, xj

i
is the ith subsystem

of the j subplant, bj
i

is a constant of appropriate dimension. The
interconnection terms � rk reflect the interconnection between the
ith and the kth subsystem. The following theorem establishes the
properties of the learning law.

Theorem 1. For the system (13) the HONN (2) trained with the
EKF-based algorithm (8) to approximate the virtual and control laws,
ensures that the tracking error (9) is semiglobally uniformly ultimately
bounded (SGUUB); moreover the HONN weights remain bounded.
Proof can be found in [8].
4.1. Helicopter HONN

The development of the virtual and real control laws for the
helicopter model is derived as follows: the system model (11) is
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ivided into two subsystems (13) and a control law (2) for each
ubsystem is designed. The first subsystem is used for tracking the
itch reference, and the second one is used for tracking the yaw
eference. The pseudo-control for the axis-pitch is approximated
y a HONN; the error which is minimized by the EKF (8)–(9) is
he difference between the pitch-axis position and the reference
ignal. Now, the real control is approximated by another HONN and
he error difference between the virtual control and the pseudo-
ontrol is reduced by an EKF. The virtual and real control law for
ontrolling yaw position is similar as the control law for the pitch.
ctivation function for the neural networks is as presented in (5).
o the author’s knowledge there is no a procedure of selecting the
umber of neurons for each neural network neither the degree of
ach activation function, it depends on the expertise of the designer.
t is important to remark that neural networks are trained on-line.
he virtual and real controls proposed are described as follows:

˛1(k) = w11(k)S2(x1(k)) + w12(k)S2(x2(k)) + w13(k)S2(x1ref (k))

+w14(k)S2(x2ref (k)) + w15(k)S(x1(k))S(x2(k))

+w16(k)S(x1ref (k))S(x2ref (k)) + w17(k)S(x1(k))S(x1ref (k))

+w18(k)S(x2(k))S(x2ref (k)) + w19(k)S(x1(k))

+w110(k)S(x2(k)) + w111(k)S(x1ref (k)) + w112(k)S(x2ref (k))

(14)

˛2(k) = w21(k)S2(x1(k)) + w22(k)S2(x2(k)) + w23(k)S2(x1ref (k))

+w24(k)S2(x2ref (k)) + w25(k)S(x1(k))S(x2(k))

+w26(k)S(x1ref (k))S(x2ref (k))

+w28(k)S(x2(k))S(x2ref (k)) + w29(k)S(x1(k))

+w210(k)S(x2(k)) + w27(k)S(x1(k))S(x1ref (k))

(15)

Vmp(k) = w31(k)S(x1)S(x2(k)) + w32(k)S(x1(k))S(x3(k))

+w33(k)S(x2(k))S(x4(k)) + w34(k)S(x3(k))S(x4(k))

+w35(k)S(˛1(k))S(˛2(k)) + w36(k)S(x2(k))S(˛2(k))

+w37(k)S(x4(k))S(˛1(k)) + w38(k)S(x2(k))S(x3(k))

+w39(k)S(x1(k)) + w310(k)S(x2(k)) + w311(k)S(x3(k))

+w312(k)S(x4(k))

(16)

Vmy(k) = w41(k)S(x1(k))S(x2(k)) + w42(k)S(x1(k))S(x3(k))

+w43(k)S(x2(k))S(x4(k)) + w44(k)S(x3(k))S(x4(k))

+w45(k)S(˛1(k))S(˛2(k)) + w46(k)S(x2(k))S(˛2(k))

+w47(k)S(x4(k))S(˛1(k)) + w48(k)S(x2(k))S(x3(k))

+w49(k)S(x1(k)) + w410(k)S(x2(k)) + w411(k)S(x3(k))

+w412(k)S(x4(k))

(17)

here ˛1(k) is a virtual control for x3(k), Vmp(k) is a control for
1(k), ˛2(k) is a virtual control for x4(k) and Vmy(k) is a control for
2(k). The weights wij(k) are updated by (8) and S(x) is a hyperbolic
angent function given by (5).  Simulations results are presented in
ection 6.

. Discrete-time block control
The second algorithm for controlling the helicopter model (11)
ses a discrete-time decentralized RHONN to identify it. A series
arallel structure and a Nonlinear Block Control (NBC) form are
sed as [22]:
ft Computing 12 (2012) 2462–2469 2465

�1
i
(k + 1) =

L1p∑
p=1

wi1p �
j∈I1p

Sd1jp
1p +

L′
1p∑

m=L1p+1

w′
i1mx

1
i (k),

�2
i
(k + 1) =

L2p∑
p=1

wi2p �
j∈I2p

Sd2jp
2p +

L′
2p∑

m=L2p+1

w′
i2mx

2
i (k),

...

�q
i
(k + 1) =

Lqp∑
p=1

wiqp �
j∈Iqp

Sdqjpqp +
L′qp∑

m=Lqp+1

w′
ipmx

r
i (k), q = 3, · · ·,  r − 1

�r
i
(k + 1) =

Lrp∑
p=1

wirp �
j∈Irp
Sdrjprp + wiui

(18)

where �i(k) are the states of the neural network, xi(k) are the states
of the plant, Lqp is the number of high order connections, L′

i
is the

number of fixed parameters w′, which depend on the on the plant
structure and are incorporated to the neural network model in
order to obtain a block controllable structure, {Iip, I2p, . . .,  Irp} is
a collection of subsets {1p, 2p, . . .,  m + n}, wi is the on-line adapted
weights for the neural network by a Kalman learning algorithm, di
is a non-negative integer which gives the high order connections to
the neural network, S is a vector which has the sigmoid activation
functions and is defined as in (3).

It is considered the problem of approximating the ith state of the
nonlinear system (11) by the following ith discrete-time RHONN in
its series-parallel representation [23,25]:

�i(k + 1) = w∗�
i zi(x(k), u(k)) + �zi , i = 1, . . . , n (19)

where �i(k) is the ith plant state, �zi is a bounded approximation
error, which can be reduced by increasing the number of adjustable
weights [25]. Assume that there exists an ideal weight vector w∗

i
such that ‖�zi‖ can be minimized on a compact set ˝zi ∈ R

Li . In
general, it is assumed that this vector exists and is constant but
unknown. The weights wi(k) are trained on-line with the Kalman
filtering algorithm (8).

Theorem 2. The RHONN (18) trained with the EKF-based algorithm
(8), ensures that the identification error (9) is SGUUB; moreover the
RHONN weights remain bounded. The proof can be found in [24].

5.1. RHONN model

In this section, neural models are proposed for this application.
We observe that (11) can be represented in the form described in
(18), thus a series parallel representation neural model is used. In
order to achieve control objectives, for each tracking control we
proposed two subsystems ˙1 and ˙2. The whole tracking control
problem is as follows: once subsystems ˙1 and ˙2 have identified
the helicopter model (11), then neural sliding mode control laws
based on these new subsystems are applied to both helicopter and
neural models to track the references. Neural networks are trained
on-line with EKF. Based on the mathematical models (11) and (18)
we have the next subsystem ˙1

�1(k + 1) = w11(k)S(x1(k)) + w12(k)S2(x1(k))

+w13(k) + w14(k)x2(k)
�2(k + 1) = w21(k)S(x1(k)) + w22(k)S(x2(k))

+w23(k)S(x1(k))S(x2(k)) + w24(k)Vmp(k)

y1(k) = �1(k)

(20)
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nd the subsystem ˙2 is given by:

�3(k + 1) = w31(k)S(x3(k)) + w32(k)S2(x3(k))

+w33(k) + w34(k)x4(k)

�4(k + 1) = w41(k)S(x3(k)) + w42(k)S(x4(k))

+w43(k)S(x3(k))S(x4(k)) + w44(k)Vmy(k)

y2(k) = �3(k)

(21)

here �1(k) identifies x1(k), �2(k) identifies x3(k), �3(k) identifies
2(k) and �4(k) identifies x4(k). These subsystems have a NBC form
nd y1(k) is the output for the first subsystem, y2(k) is the output
or the second subsystem, wij(k) are updated by (8),  activation func-
ions S(x(k)) are given by (5),  the weights w12(k), w22(k), w34(k) and

44(k) remain fixed during the entire simulation, by doing so, it is
voided the zero crossing of the weights and loss of controllability.

.2. Control law synthesis

Subsystems ˙1, ˙2 and discrete time sliding mode control are
sed to achieve pitch and yaw position tracking. The first subsystem
1 is used for controlling pitch position and the second one ˙2

s used for controlling yaw position. Now, for the pitch-position
racking, we define the following error:

1(k) = y1(k) − x1ref (k) (22)

here x1ref(k) is the pitch-position reference. By taking one step
head in (22), it is obtained:

1(k + 1) = w11(k)S(x1(k)) + w12(k)S2(x1(k)) + w13

+w14x2(k) − x1ref (k + 1)

nd x2(k) is seen as an input control. Now, if we define xd2(k) as

xd2(k) = w−1
14 (−w11(k)S(x1(k))) − w12S2(x1(k)

−w13) + w−1
14 (x1ref (k + 1) + K1z1(k))

(23)

hich is a desired value for x2(k), we have the following dynamic
or z1(k)

1(k + 1) = K1z1(k) (24)

here K1 is a Schur matrix, To ensure w14 has inverse, it is chosen
s a constant value. The new error z2(k) can be defined as

2(k) = x2(k) − xd2(k) (25)

nd taking one step ahead in (25), we have the following equations:

z1(k + 1) = K1z1(k) + w14(k)z2(k)

z2(k + 1) = w21(k)S(x1(k)) + w22(k)S(x2(k))

+w23(k)S(x1(k))S(x3(k)) + w24Vmp − xd2(k + 1)

(26)

here Vmp is the input control and �2(k + 1) = x2(k + 1) + ı, where ı
s the identification error which is SGUUB by Theorem 2. Therefore,

e use �2(k + 1) like an approximation for x2(k + 1). Let us define the
anifold like S(k) = z2(k) = 0, then (26) has the following structure

z1(k + 1) = K1z1(k) + w14(k)S(k)

S(k + 1) = w21(k)S(x1(k)) + w22(k)S(x2(k))

+w23(k)S(x1(k))S(x3(k))

+w24Vmp − xd2(k + 1)

(27)

n order to design a control law such that the tracking is achieved,
 discrete sliding mode is implemented as [9]:
mp(k) =

⎧⎨
⎩

Vmpeq(k) if |Vmpeq(k)| ≤ u01

u01
Vmpeq(k)
|Vmpeq(k)| if |Vmpeq(k)| > u01

(28)
ft Computing 12 (2012) 2462–2469

where

Vmpeq(k) = −w−1
24 (w21S(x1(k)) + w22(k)S(x2(k))

−w23(k)S(x1(k))S(x3(k)) + xd2(k + 1))
(29)

is calculated from (26) by taking S(k + 1) = 0, u01 is the control bound.
In this control law, if |Vmpeq | ≤ u01 the control Vmpeq(k) forces the
motion through the sliding surface in one step, in the other case,
the term u01

Vmpeq(k)
|Vmpeq(k)| avoids a high value of control by forcing it to

decrease until |Vmpeq(k) | ≤ u01 is satisfied. For a proof of these facts
see [12]. Again w24 is fixed to avoid controllability loss. Once the
sliding mode is reached, the following dynamic is obtained:

z1(k + 1) = K1z1(k) (30)

where K1 is a matrix Schur. Therefore the error (22) will converge
asymptotically to zero. The following result is useful to ensure the
error between the output of the plant and the reference converges
to zero [27]:

‖y1(k) − yr(k)‖ ≤ ‖y1(k) − yn(k)‖ + ‖yn(k) − yr(k)‖ (31)

where y1(k) − yr(k) is the output tracking error between output
of the plant and the desired reference. y1(k) − yn(k) is the out-
put identification error between the output of the plant and the
neural network, which is reached by the EKF learning algorithm.
yn(k) − yr(k) is the output tracking error between the output of the
neural network and the desired reference, which is satisfied by the
sliding mode control algorithm (28). For yaw-position tracking, we
repeat the same steps as before, but in this case, we  define the new
error:

z3(k) = y2(k) − x2ref (k) (32)

The control law for the second subsystem ˙2 is given by:

Vmy(k) =

⎧⎨
⎩

Vmpeq(k) if |Vmpeq(k)| ≤ u01

u02
Vmpeq(k)
|Vmpeq(k)| if |Vmpeq(k)| > u01

(33)

where

Vmpeq(k) = −w−1
44 (w41S(x3(k)) + w42(k)S(x4(k))

+w43(k)S(x3(k))S(x4(k)) + xd4(k + 1))
(34)

and u02 is a bounded for this control law, and xd4 is given by

xd4(k) = w−1
34 (−w31(k)S(x3(k))) − w32S2(x3(k))

+w−1
34 (−w33 + x2ref (k + 1) + K2z3(k))

(35)

where K2 is Schur. Next section presents simulation results to this
control problem.

6. Simulation results

For simulation purposes, we  consider the parameters listed in
Table 1 [17]. Notice that although all states of the plant must be
accessible for implementation of control laws (16)–(17), (28) and
(33) it is not necessary to know the plant parameters neither its
model. We  suggest a square reference y1ref(k) for the pitch axis and
a sine reference y2ref(k) = 0.6 sin ((	/5)kT) rad/s for the yaw axis.

6.1. Backstepping results

The backstepping strategy is portrayed in Fig. 2. We  observe that
neural controller is updated by the EKF based on the tracking error.

Then, the controller generates a control law applied to the system.
Notice that the plant model is not needed for the control design.

The output tracking performance of the plant and reference sig-
nals are shown in Figs. 3 and 4. The neural backstepping control law
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Fig. 2. Backstepping control law scheme.
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this  figure legend, the reader is referred to the web  version of the article.)

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

time(sec)

y
a
w

(r
a
d
)

x
2
(t) x

2ref
(t)

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

time(sec)

x
2
(t

) 
−

 x
2

re
f(t

)

error

Fig. 4. (Above) Graphs of the yaw position x2(k) (blue line) and its reference x2ref(k)
(black line). (Below) Tracking error. (For interpretation of the references to color in
this  figure legend, the reader is referred to the web  version of the article.)

0 5 10 15 20 25 30 35 40 45 50
−20

0

20

40

time(sec)

In
pu

t p
itc

h 
vo

lta
ge

(V
ol

ts
)

V   (k) controlmp

0 5 10 15 20 25 30 35 40 45 50
−50

0

50

In
pu

t y
aw

 v
ol

ta
ge

(V
ol

ts
)

V   (k) controlmy
time(sec)

Fig. 5. Backstepping control law. (Above) Pitch voltage. (Below) Yaw voltage.

(16)–(17) applied to the helicopter model (11) shows a good track-
ing for both pitch and yaw positions even when the plant is treated
as two separated independent subsystems and the references are
of square and sine type. The small transitory for the pitch and yaw
position can be explained for the time necessary to identify ade-
quately the plant. Tracking error results reveal that backstepping
strategy is able to maintained the reference error bounded for pitch
and yaw positions.

Control laws Vmp and Vmy applied to the helicopter model are
displayed in Fig. 5. Due to the discrete (square) type reference for
the pitch position, sudden peaks of input voltages are required
during the switching of this reference signal. After the transient
response for pitch and yaw position has passed, the reference

signals are well followed and the control inputs are reduced to
acceptable values. Voltage requirements are reasonable for the
motor, that is the reason for the good trajectory tracking.
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Fig. 6. Block control law scheme.
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o  color in this figure legend, the reader is referred to the web version of the article.)

.2. Block control results

The identification and block control scheme is presented in
ig. 6. Block control is more complex than the backstepping one
ecause it uses a neural model which has an approximated dynamic
f the plant. The weights of the RHONN are updated every k steps
y an EKF, the filter is based on the error between the states of the
lant and the estimated ones.

Figs. 7 and 8 show the output y(k) of the helicopter model and
he references to be tracked along with their tracking errors. We
bserve a good performance for tracking the reference signals.

n comparison with the backstepping control, reference signals
or both pitch and yaw positions are better followed by the
lock control strategy because it receives more information than
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ig. 8. (Above) Graphs of the pitch position x2(k) (blue line), its reference x2ref(k)
black line) and the neural network identification �2(k) (yellow line). (Below) Track-
ng error between pitch and reference signals. (For interpretation of the references
o  color in this figure legend, the reader is referred to the web version of the article.)
Fig. 9. Block control law. (Above) Pitch voltage. (Below) Yaw voltage.

backstepping does. Tracking errors exhibit how the trajectories are
achieved with a small bounded deviation.

The control laws (28) and (33) applied to the helicopter model
can be seen in Fig. 9. Even though the plant model is divided in
two independent subsystems and one control law is designed for
each subsystem, each helicopter output y1(t), y2(t) follows its own
reference. Therefore, one control law applied to one subsystem has
no effect to the other one; i.e. one output signal follows a reference
without taking into account the dynamics produced by the other
control law. Voltage requirements are less demanding than those
require for the backstepping. Pitch and yaw voltages are reasonable
for the motor, that is neural block control strategy could provide a
better implementation for the Quanser 2-DOF helicoper.

7. Conclusion

This paper has presented an important application of neu-
ral networks for controlling a 2-DOF helicopter model. Neural
backstepping and neural sliding mode block control techniques
have been considered. Although both algorithms have exhibited
good performances, block control algorithm has presented a bet-
ter behaviour. The reason is that the block control receives more
information than backstepping control does. We  remark that neu-
ral networks can be used for identification of the system and
for approximating virtual and practical controls without previ-
ous knowledge of the system neither the interconnection terms.
Training of this type on neural networks is done on-line. Numer-
ical results show that neural networks are able to track not only
continuous but also discontinuous references.
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