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Abstract: This paper is motivated by the study of mutation in HIV infection. Combination
antiretroviral therapy slows the clinical progression of HIV infection, however drug resistance
due to viral mutation is a challenging problem. Some studies have speculated that alternating
between drug regimens on a fixed schedule might forestall therapeutic failure. To further analyze
this speculation, we consider a model of 64 viral strains with 3 drug combinations to analyze
drug regimens to maximise the delay till viral escape. A model predictive control scheme is
proposed for determining near optimal switching drug schedules. This technique is compared
with an optimal control approach and with the strategy commonly used in clinical practice.

Keywords: Biological Systems, HIV Mutation, MPC

1. INTRODUCTION

HIV can only replicate inside cells. The process typically
begins when a virus particle contacts an immune system
cell that carries on its surface a special protein called CD4.
Different drugs have been proposed to affect specific parts
of the HIV life cycle, see Fig.1. Highly active antiretrovi-
ral therapy (HAART) is a combination therapy used to
reduced viral replication and to delay the progression of
the infection. However, HAART is not always successful,
many patients experience virologic failure, defined as the
inability to sustain suppression of HIV RNA levels to less
than 50 copies/ml. Temporary suppression followed by
increased viral load is referred to as viral rebound (Depart-
ment of Health [2009]). This had lead to the conclusion
that switching therapeutic options will be required lifelong
in order to prevent HIV disease progression.

Antiretroviral drug sequencing provides a strategy to deal
with virologic failure and anticipates that therapy will fail
in a proportion of patients due to resistant mutations. The
primary objectives of therapy sequencing are the avoidance
of accumulation of mutations and control of multi-drug-
resistant viruses Martinez et al. [2008]. Using mathemat-
ical modeling, in Amato et al. [1998] it was hypothesized
that alternating HAART regimens, even while plasma HIV
RNA levels were lower than 50 copies/ml, would further
reduce the likelihood of the emergence of resistance. This
concept has preliminary support from a clinical trial Mar-
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Fig. 1. HIV cycle

tinez et al. [2003], the SWATCH (SWitching Antiviral
Therapy Combination against HIV) study.

The design of drug sequencing has been a point of dis-
cussion. Ryan et al. [2007] proposed a pattern of struc-
tured treatment interruptions preceding the introduction
of the new regimen can significantly decrease the risk of
resistance emerging to new regimens. However, structured
treatment interruption were prohibited by the Department
of Health [2009].

Motivated by switching regimens, Middleton et al. [2010]
proposed a 4 variant, 2 drug combination model, which
can be seen as a switched system. Using optimal control
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strategies was shown the importance of alternating drug
regimens.

However the solution to optimal control problems fre-
quently results in a two point boundary condition prob-
lem, which can not be solved using regular integration
techniques. Numerical algorithms have been proposed to
determine optimal trajectories. Iterative solutions based
on Pontryagin’s maximum principle have been proposed,
for example Kirk [1998], but without any guarantee of
convergence. On the other hand, dynamic programming
may be useful for problems of reasonable dimension Kirk
[1998] and Middleton et al. [2010a].

Model Predictive Control (MPC) appears to be suitable
for a suboptimal application to the biomedical area, due
to its robustness to disturbances, model uncertainties
and the capability of handling constraints. Using MPC
techniques to plan treatment applications for HIV is not
a new idea Zurakowski et al. [2006], Landi et al. [2010].
However, the models used in these previous approaches
do not accurately reflect the interaction between different
genotypes and drug treatments, and consequently do not
predict the possibility of the appearance of highly resistant
genotypes.

The paper is organized as follows. The notation used
throughout the paper is introduced in Section 2. A virus
mutation treatment model and the cost function to be
minimized are presented in Section 3. The optimal control
problem and the algorithm to compute optimal trajecto-
ries are reviewed in Section 4. A MPC algorithm for the
computation of antiretroviral drug sequencing is proposed
in Section 5. Simulations results to the mitigation of viral
escape is introduced in Section 6. The paper is finalized in
Section 7.

2. NOTATION

Throughout this paper, R denotes the field of real num-
bers, R

n stands for the vector space of all n-tuples of real
numbers, R

n×n is the space of n × n matrices with real
entries, and N denotes the set of natural numbers. Matrices
or vectors are said to be positive (non-negative) if all their
entries are positive (non-negative). We write A′ for the
transpose of A, and exp(A) for the matrix exponential of
A.

3. VIRUS MUTATION TREATMENT MODEL

We consider a model with n different viral genotypes, with
viral populations, Vi : i = 1, ...n; and N different possible
drug therapies that can be administered, represented by
σ(t) ∈ {1, ..., N}, where σ is permitted to change with
time, t. In the model equations below, TH represents the
uninfected CD4+T cell population, T ∗i are the infected
cells and Li represents the latently infected cells. The
equations for the HIV treatment model are given below:

Ṫ ∗i = ψki
1,σTHVi + a1Li − d1T

∗
i +

n∑
1

μmi,jVjTH (1)

L̇i = (1− ψ)ki
1,σTHVi − a1Li − d2Li (2)

V̇i = ki
2,σT

∗
i − k3TVi − d3Vi (3)

HIV can infect a number of different cells; activated
CD4+T cell, resting CD4+T cell, quiescent CD4+T cell,
macrophages and dentritic cells. For simplicity, we con-
sider only CD4+T cells as viral hosts. The infectivity rate
can be expressed as ki

1,σ, this parameter depends of the
genotype and the therapy that is being used. Once CD4+T
cells are infected, a proportion of cells, ψ passes into the
infected cells population, whereas a proportion (1 − ψ)
passes into the latently-infected cell population. These
latently-infected cells might be activated later and start
reproducing virus, this activation is represented through
the a1 term. Viral proliferation is achieved in infected
activated CD4+T cells, this is represent by k2,σ, which
depends on the fitness of the genotype and the therapy.
The mutation rate is represented by μ , the death or decay
rates are represented by d1, d2, d3 for T ∗, L, V respectively.
mi,j ∈ {0, 1} represents the genetic connections between
genotypes.

Under normal treatment circumstances both simulations
and clinical data suggest that healthy CD4+T counts
are approximately constant Middleton et al. [2010]. This
assumption allows us to simplify the dynamics to being
essentially linear. Then the system (1-3) can be rewritten
as follows;

ẋ =

⎡
⎢⎢⎣

Λ1,σ 0 . . . 0
0 Λ2,σ . . . 0
...

. . .
...

0 0 . . . Λn,σ

⎤
⎥⎥⎦ x+ μTHMx (4)

where M = mi,j , Λi,σ is given by

Λi,σ =

⎡
⎣
−d1 a1 ψki

1,σTH

0 −(a1 + d2) (1− ψ)ki
1,σTH

ki
2,σ 0 −(k3TH + d3)

⎤
⎦

and x′ = [T ∗1 , L1, V1, . . . , T
∗
n , Ln, Vn].

3.1 A 64 variant, 3 drug combination model

We propose a model with 64 genetic variants, that is
n = 64, and 3 possible drug therapies, N = 3. The viral
variants (also called ‘genotypes’) are organized in a three-
dimensional lattice as is shown in Fig. 2. This lattice
is based on the simplifying assumption that multiple
independent mutations are required to achieve resistance
to all therapies.

The wild type genotype (g1) would be the most prolific
variant in the absence of any drugs, however, it is also the
variant that all drug combinations have been designed to
combat, and therefore is susceptible to all therapies. On
the other hand, after several mutations the highly resistant
genotype (g64) is a strain with low proliferation rate,

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

14858



g49 g50 g51 g52

g33 g34 g35 g36

g

g17 g18 g19 g20

g

g56 Therapy

g24

g40
g60

y 3

g1 g2 g3 g4

g5 g6 g7 g8

g24

g44

g64

g28

g48

g9 g10 g11 g12

g32

g13 g14 g15 g16

Therapy 1

Fig. 2. Mutation tree for a 64 genotype and 3 drug
combination model

but that is resistant to all drug therapies. For simulation
purposes, we shall use parameters shown in Table 1.

Table 1. Parameters Values

Parameter Value Value taken from:

k1 3.8 × 10−3 Conejeros et al. [2007]

k2 6.45 × 10−1 Fitted

k3 7.79 × 10−6 Conejeros et al. [2007]

d1 0.4 Conejeros et al. [2007]

d2 0.005 Conejeros et al. [2007]

d3 2.4 Conejeros et al. [2007]

a 3 × 10−4 Conejeros et al. [2007]

ψ 0.97 Conejeros et al. [2007]

In this model therapies are composed of reverse transcrip-
tase inhibitors and protease inhibitors, which can affect
two specific parts of the HIV cycle. This is represented by

ki
1,σ = k1fiησ,i (5)

ki
2,σ = k2fiθσ,i (6)

where ησ,i represents the infection efficiency for genotype
i under treatment σ, and θσ,i expresses the production
efficiency for the genotype i under treatment. We assume
that in the absence of treatment mutation reduces the
fitness of the genotype, thus we use linear decreasing
factors for fi, which represents the fitness of the genotype
i. The drug efficiencies can be seen in Fig. 2, where the
arrows indicate the efficiency of the drug. For instance, the
genotypes g1, g5, ..., g61 are all on one face of the lattice,
and are fully susceptible to therapy 1. The opposite face,
g4, g8, ..., g64 describes all genotypes highly resistant to
therapy 1.

3.2 Cost Function Motivation

We consider a cost function of the form
J := c′x(T ) (7)

where c = [0, 0, 1, ..., 0, 0, 1], and T is an appropriate final
time. This cost was proposed by Middleton et al. [2010],

and penalises the total viral load. For biological reasons, if
the total viral load is small enough during a finite time of
treatment, then there is a significant probability that the
total viral load becomes zero. Munoz et al. [1997] noted
that the stronger the suppression of viral replication the
less likely a significant resistance will emerge.

4. OPTIMAL CONTROL PROBLEM REVIEW

The model for the treatment of viral mutation given in (4)
is described in continuous time. In practice, measurements
can only reasonably be made at certain periodic intervals.
For simplicity, we consider a regular treatment interval τ ,
during which treatment is fixed. If we use k ∈ N to denote
the number of intervals since t = 0, then

x(k + 1) = Aσ(k)x(k) (8)

where x(k) = x(kτ) is the sampled state, Aσ :=
exp((diag(Λn,σ) + μM)τ), σ(k) is the switching sequence
σ(k) ∈ {1, 2, ..., N}, and x(0) = x0 is the initial condi-
tion. Clearly, σ(k) constrains Aσ(k) to jump among the N
vertices of the matrix polytope A1, ..., AN .

The cost function (7) is to be minimized over all admissible
switching sequences. The optimal switching signal, the cor-
responding trajectory and the optimal cost function will
be denoted as σo(k), xo(k) and J(x0, x

0, σ0) respectively.
Letting u = σ(k), and using the Hamilton-Jacobi-Bellman
equation for the discrete case, we have;

V (x, k) = min
u∈U

{V (k + 1, x(k + 1))} (9)

where denoting the costate vector by p(k), the general
solution for this system is

V (x(k), k) = p(k)′x(k) (10)
Using equations (7), (8), (9) and (10), we obtain the
following system

xo(k + 1) = Aσo(k)x
o(k)

po(k) = A′σo(k)p
o(k + 1) (11)

σo(k) = argmin
s

{po(k + 1)′Asx
o(k)}

with boundary conditions x(0) = x0 and p(T ) = c.
Remark 1. Notice that equations (11) are inherently
nonlinear. The system must be integrated forward whereas
the co-state equation must be integrated backward, both
according to the coupling condition given by the switching
rule. (11) is a two point boundary value problem, and can
not be solved using regular integration techniques.

�

4.1 Algorithm for Computing Optimal Trajectories

Because of the discrete nature of the input, a possible
numerical solution for the optimal control problem stated
in (11) is to make an exhaustive examination of every
possible switching rule. Given the cost (7) and the initial
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condition x(0) the optimal control problem can be written
as

min
iT ,iT−1,...,i1∈{1,...,N}

c′ AiT AiT−1 . . . Ai1x(0) (12)

Let us recursively define the sequence of matrices

ΩT = c

Ωk−1 = [A′1Ωk A
′
2Ωk . . . A′NΩk]

Then we have that V (x, 0) = mini Ω′0,ix, where Ω0,i is the
ith column of Ω0 and in general

V (x, k) = min
i

Ω′T−k,ix(k) (13)

At each step of the evolution the feedback strategy can be
computed as

u(x(k)) = argmin
i

Ω′T−k,ix(k) (14)

namely selecting the smallest component of the vec-
tor Ω′T−kx(k). The implementation of this strategy that
we call “brute force” requires storing the columns of
Ω′T−kx(k) whose number would be 1, N,N2, N3, . . . , NT .
In order to reduce computational and storage demands
we can combine the algorithm above with a dual version
Middleton et al. [2010a].

5. MODEL PREDICTIVE CONTROL

Model predictive control problem can be formulated as
solving on-line a finite horizon open-loop optimal control
problem subject to system dynamics and constraints in-
volving states and controls Allgower et al. [2002]. The basic
idea of MPC is based on measurements obtained at time
t, the controller predicts the future dynamic behavior of
the system over a prediction horizon Tp and computes an
open-loop optimal control problem with control horizon
Tc, to predict the future input for the system, see Fig.3.

future prediction
past ipast set-point

predicted state x

closed-loop
state x

open loop input u

closed loopclosed-loop
state u

t t + � t + Tc t + Tp

control horizon Tc

prediction horizon Tp

Fig. 3. Model Predictive Control

Due to disturbances, measurement noise and model-plant
mismatch, the true system behavior is different from the

predicted one. In order to incorporate a feedback mech-
anism, the first step of the optimal control sequence is
implemented. When the next measurement becomes avail-
able, at time t + τ , the whole procedure -prediction and
optimization- is repeated to find a new input function with
the control and prediction horizons moving forward.

5.1 Mathematical Formulation of MPC

From the biological nature of HIV infection, the system
(8) is unstable and in fact not stabilizable. This is because
of the existence of a highly resistant genotype that is
not affected by any treatment. Therefore, once the highly
resistant mutant has “emerged” the population will “blow
up” after a period of time. The objective of MPC is to
suppress the total viral load, (7) for as long as possible. In
order to distinguish the real system and the system model
used to predict the future for the controller, we denote the
internal variables in the controller by a bar (x̄, σ̄). We can
formulate the following model predictive control problem;

Problem 1 Find

min
σ̄
J(x(t), σ̄;Tc, Tp),

with
J(x(t), σ̄;Tp, Tc) := c′x(t+ Tp)

subject to:

x̄(k + h+ 1/k) = Aσ̄(k+h/k)x̄(k + h/k)

σ̄(k + h/k) ∈ D
x̄(k + h/k) ∈ X

For numerical solution, we use the next algorithm;

MPC Algorithm

(1) Compute the open-loop optimal control for a receding
horizon time Tp

(2) Apply only the first input of the optimal command
sequence to the system

(3) The remaining optimal inputs are disregarded
(4) Collect the new measurement from the system
(5) Continue with point (1) until the final time is reached

�
In this algorithm, Tp has to be chosen in advance. It is
important to mention that the shorter the horizon, the
less costly the solution of the on-line optimization problem.
The method to solve the open-loop optimal problem using
(14) has an exponential growth. Then, it is desirable use
short horizons MPC schemes for computational reasons.
In general it is not true that a repeated minimization over
a finite horizon objective in a receding horizon manner
leads to an optimal solution for the the infinite horizon
problem Bitmead et al. [1990]. In fact, both solutions differ
significantly if a short horizon is chosen.
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5.2 MPC Treatment Scheduling

MPC algorithms typically achieve superior performance
with respect to other control strategies when manipulated
and controlled variables have constraints to meet. A thor-
ough overview of the MPC history can be found in Morari
et al. [1999]. However, for this particular application the
system is not stabilizable. The MPC objective is to delay
as far as possible the escape of the system. In mathematical
terms, the problem could be thought as a minimization
of the worst eigenvalue of Aσ under the switching σ.
However, this would only be expected to be optimal over
an infinite time horizon. In general the finite set of possible
control values causes problems for many control design
techniques, but for this problem helps MPC by making
the optimization easier to solve.

6. SIMULATION STUDIES

We constrain the control to take the values of 1, 2 or
3, this represent the possible treatments. It is important
to mention that patient can not be under two or more
treatments at the same moment. To be consistent with
application in a clinical setting, we simulate measurements
and new clinical decisions being made every 3 months.
Thus the decision time τ is fixed to 90 days.

6.1 Switch on Virologic Failure

For comparison purposes, we introduce a “switched on
virologic failure” strategy. This is based on the guidelines
for the use of antiretrovirals agents in HIV-1 infected
adults presented by the Department of Health [2009].
Virologic failure means virologic rebound after complete
suppression. There is no clear consensus on the optimal
time to change therapy for virologic failure. The most
accepted approach allows detectable viremia up to an
arbitrary level (e.g., 1000-5000 copies/ml). For simulation
purpose, we will consider as a virologic failure when viral
load is > 1000 copies/ml. This is because, the ongoing viral
replication in the presence of antiretroviral drugs promotes
the selection of drug resistance mutations and may limit
future treatment options.

Using the virologic failure Treatment, see in Fig.4, there
are three changes in therapy in a period of 4 years.
The first therapy keeps the viral concentration below
1000 copies/ml for 1 year, however resistant genotypes
appear. Then the second treatment is introduced, the
viral population is decreased for a while, but because
there is a high concentration of infected cells already,
virologic failure occurs in a shorter period of time. It is
then necessary to introduce the third treatment. However,
we can observe how the viral load starts to escape after
4 years in this model. An important fact is that latently
infected cells remain almost constant, this fits with clinical
and theoretical studies which agree that these cells played
a very important role for late stage HIV infection.
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Fig. 4. Simulation of switch virologic failure treatment
strategy

6.2 Implementation of MPC Algorithms

Using 10 months as prediction horizon for the MPC, we
present in Fig. 5 the closed-loop response of T ∗, L, V and
the switched drug therapy over a period of 14 years. The
MPC algorithm accomplishes the main goal of containing
the viral load as long as possible.
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Fig. 5. Closed loop treatment using MPC

In fact, for this example the virologic failure would occur
after 12 years, this means that we can extend the viro-
logic failure for 8 years more compared to the current
clinical assessment. In addition the total population of
infected CD4+T cells is decreased for a period of 6 years.
These results are consistent with the preliminary clinical
SWATCH trial Martinez et al. [2003]. This trial concluded
that proactive alternation of antiretroviral regimens might
extend the long-term effectiveness of treatment options
without adversely affecting patients’ adherence or quality
of life.
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We may notice in Fig. 5 how the therapy switching is
irregular for the first 4 years, but it remains quite regular
for the remaining years. This means that perhaps using an
oscillating treatment could be a good strategy to mitigate
the viral replication when it is not possible to measure the
complete HIV state.

In fact, oscillating strategy is very similar to the trial
SWATCH proposed by Martinez et al. [2003]. We notice
in Table 2 that the oscillating drug regimen gives very
close results to the MPC and optimal control. Based on
simulation results and clinical trials we could infer that
this approach would minimize emergence of drug-resistant
virus better than frequent monitoring for viral rebound.
For comparison purpose, we test one step ahead MPC
strategy, which gives very low computational time and has
good results with respect to the other strategies.

Table 2. Simulation results for a 5 years period
treatment

Strategy Viral Load Computational Time

Virologic Failure 5.14e28 1.2 sec

MPC 2.31e-9 4.4 sec

Optimal Control 2.20e-9 32 min

Oscillating 6.22e-9 1.5 sec

One step ahead 6.74e-8 1.9 sec

6.3 Computational Resources

From these results, we conclude that alternating between
drugs regimens is important to suppress HIV RNA levels
maximally and prevent further selection of resistant muta-
tions. However, to find the optimal trajectories can require
high computational resources. For example, using a “brute
force” approach which analyzes all possible combinations
for therapy 1, 2 and 3 with decision time τ = td for a period
of T , there are 3

T
td possible combinations. Considering a

period treatment of 5 years and decision time of 3 months,
we can compare in Table 2 the computational time for
different strategies. For instance, to compute the open-loop
optimal switching trajectory requires 32 min simulation
time, while on the other hand the MPC just require 4.4 sec;
the difference on the viral load between these techniques is
very small. Then we can infer that relaxing the condition
of optimality, MPC may reduce dramatically simulation
resources.

7. CONCLUSIONS

In this paper, a 64 variant with 3 drug combination model
is presented to analyze different drug regimens to miti-
gate HIV escape. Simulation results show the potential
of proactive switching and alternation of antiretroviral
regimens with drugs to extend the overall long-term effec-
tiveness of treatment options. These results are consistent
with preliminary clinical trials. At the expense of some
conservatism in the cost function, MPC is a very appropri-
ate framework for this problem, because it provides close
results to the open-loop optimal control problem, extends
the virologic failure time and reduces computational re-
sources.
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