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Abstract— More than 25 years since HIV was discovered, a
cure for infection remains to be found. One main concern in
treating HIV infection is the emergence of resistant genotypes,
causing the patient to proceed to AIDS. In this paper, we
consider a specific simplified switched system model of HIV
mutation dynamics with four genotypes under two different
treatments. We address the optimal control problem for a
general class of switched systems to find the drug sequence
that minimizes the viral load. This gives a two point boundary
value problem, that is difficult to solve due to the switched
system nature. Alternatively, exhaustive search approaches
may be used but are computationally prohibitive. To avoid
these problems we propose several algorithms based on linear
programming to reduce the computational burden whilst still
computing the optimal sequence.

I. INTRODUCTION

The last update of UNAIDS in 2009, showed a worldwide

increase of people living with HIV (human immunodefi-

ciency virus). Approximately 33.4 million people (adults and

children) are living with HIV and the estimated number of

people newly infected with HIV was 2.7 million in 2008,

20% higher than the number in 2000. At present, there is

no known method to eradicate the virus. In addition, long

term treatment to control the replication often fails, causing

patients infected with HIV to progress to AIDS (Acquired

Immune Deficiency Syndrome). The estimation of deaths due

to AIDS in 2008 was 2 million people.

For this reason, much research has been conducted for

the last 27 years in order to find a possible solution to

stop the infection. The major effort has been done in drug

design in order to attack different stages of the HIV life

cycle. Combination antiretroviral therapy (ART) prevents

immune deterioration, reduces morbidity and mortality, and

prolongs the life expectancy of people infected with HIV

[1]. The concentration of virus in the blood is reduced by at

least five orders of magnitude. However therapies are only

capable of partially and temporarily halting the replication

of HIV. One of the main concerns with HIV infection is that

resistant mutations have been described for all antiretroviral
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drugs currently in use. This has led to the conclusion that

switching therapeutic options will be required lifelong in

order to prevent HIV disease progression [1]. However, even

this ART sequencing will fail in a proportion of patients

in the presence of highly resistant mutants, that is, mutants

resistant to all known drug combinations.

Motivated by these problems with HIV infection, some

authors have examined viral mutation from a mathematical

perspective. Several models have been presented in recent

years; [2], [3], and [4]. Most of these models present a

basic relation between CD4+T cells, infected CD4+T cells,

macrophages and virus. Other authors have studied the drug

scheduling problem [5], [6], [7], and [8]. A treatment model

proposed by [9] shows how system theory allows the design

of switching strategies to delay the emergence of highly

resistant mutant viruses. Using symmetric replication rate

values in two genotypes, it was proved in [10] that the opti-

mal switching rule is given by the Filippov trajectory along

the plane of these genotypes. However, it is unrealistic to

expect complete symmetry in the viral response to alternate

treatments.

Switched systems present interesting theoretical chal-

lenges and are important in many real-world problems [12].

The problem of determining optimal switching trajectories

in hybrid systems has been widely investigated, both from

theoretical and from computational point of view [15], and

[18].

For continuous-time switched systems, several prior works

present necessary and/or sufficient conditions for a trajectory

to be optimal, by utilising of the minimum principle [16]

and [17]. However, as yet there is no general solution for

this optimal control problem. Numerical algorithms have

been proposed to determine optimal trajectories. Iterative

solutions based on Pontryagin’s maximum principle have

been proposed, for example [14], but without any guarantee

of convergence. On the other hand, dynamic programming is

good for problems of reasonable dimension [14]. Here, based

on the specific problem considered, we proposed algorithms

based on linear programming (LP) in order to reduce the

computational burden and simulation time.

The paper is organized as follows. The optimal control

problem is reviewed in Section III. Algorithms for the

computation of optimal trajectories are proposed in Section

IV. The application to the mitigation of viral escape is

introduced in Section V. Simulations results are presented

in Section VI. The paper is finalized in Section VII.
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II. NOTATION

Throughout this paper, R denotes the field of real number,

R
n stands for the vector space of all n-tuples of real numbers,

R
n×n is the space of n×n matrices with real entries, and N

denotes the set of natural numbers. For x in R
n , xi denotes

the ith component of x, and the notation x � 0 means that

xi ≥ 0 for 1 ≤ i ≤ n. R
n
+ = {x ∈ R

n : x � 0} denotes the non-

negative orthant in R
n. Matrices or vectors are said to be

positive (non-negative) if all their entries are positive (non-

negative); this is written as A ≻ 0 and A � 0, where 0 is the

zero-matrix of the appropriate dimension. We write A ′ for

the transpose of A, and exp(A) for the matrix exponential of

A.

III. OPTIMAL CONTROL PROBLEM REVIEW

Consider a discrete time switched system of the following

general form

x(k + 1) = Aσ(k)x(k) (1)

defined for all k ∈ N where x ∈ R
n is the state, σ(k) is the

switching sequence σ(k) ∈ {1,2, ...,N}, and x(0) = x0 is the

initial condition. For (1) to be a positive system for any

switching sequence, Ai, i ∈ {1, ...,N} must be nonnegative

matrices, that is Ai � 0. Clearly, σ(k) constrains Aσ(k) to

jump among the N vertices of the matrix polytope A 1, ...,AN .

We assume that the full state vector is available and the

control law is a memoryless state feedback

σ(k) = u(x(k)) (2)

The cost functional to be minimized over all admissible

switching sequences is given by

J = c′x(T )+
T−1

∑
k=0

q′σ(k)x(k) (3)

where x(k) is a solution of (1) with the switching signal

σ(k). The vectors c and qi, i = 1,2, · · · ,N, are assumed to

be positive. The optimal switching signal, the corresponding

trajectory and the optimal cost functional will be denoted as

σo(k), xo(k) and J(x0,x
0,σ0) respectively. Letting u = σ(k),

q(k,x,u) = qσ(k), and using the Hamilton-Jacobi-Bellman

equation for the discrete case, we have;

V (x,k) = min
u∈U

{q(k,x,u)+V(k + 1,x(k + 1))} (4)

where denoting the costate vector by p(k), the general

solution for this system is

V (x(k),k) = p(k)′x(k) (5)

Using equations (1), (3), (4) and (5), we obtain the following

system

xo(k + 1) = Aσ o(k)x
o(k)

po(k) = A′
σ o(k)po(k + 1)+ qσ o(k) (6)

σo(k) = argmin
s

{po(k + 1)′Asx
o(k)+ q′sx

o(k)}

with boundary conditions x(0)= x0 and p(T ) = c. Notice that

equations (6) are inherently nonlinear. The state equations

must be integrated forward whereas the co-state equation

must be integrated backward, both according to the coupling

condition given by the switching rule. As a result, the

problem is a two point boundary value problem, and can

not be solved using regular integration techniques.

IV. ALGORITHMS FOR COMPUTING OPTIMAL

SWITCHING TRAJECTORIES

For the application to be presented in the next section, we

consider only a penalty on the final state, that is,

J = c′x(T ) (7)

Given the initial condition x(0) the optimal control problem

can be written as

min
iT ,iT−1,...,i1∈{1,...,N}

c′ AiT AiT−1
. . . Ai1x(0) (8)

Let us recursively define the sequence of matrices

ΩT = c

Ωk−1 = [A′
1Ωk A′

2Ωk . . . A′
NΩk]

Then we have that V (x,0) = mini Ω′
0,ix, where Ω0,i is the ith

column of Ω0 and in general

V (x,k) = min
i

Ω′
k,ix(k) (9)

At each step of the evolution the feedback strategy can be

computed as

u(x(k)) = argmin
i

Ω′
k,ix(k) (10)

namely selecting the smallest component of the vector

Ω′
kx(k). The implementation of this strategy that we call

“brute force” requires storing the columns of Ω ′
kx(k) whose

number would be 1,N,N 2,N3, . . . ,NT . This exponential

growth could be too computationally demanding. Fortu-

nately, it can be seen that, in general, many of the columns of

the matrices Ωk may be redundant and can be removed. This

can be done by applying established dynamic programming

methods as follows (see [13] for details).

A. Algorithm 1: Reverse Time Solution

Given Ωk,i solve the LP problem

µk,i = min
x: Ω′

k,ī
x ≥1̄

Ω′
k,ix (11)

where 1̄ = [1 1 . . . 1]′ and Ωk,ī the matrix obtained from Ωk

by deleting the i− th column. Then if µk,i ≥ 1 the column

Ωk,i is redundant (and it should be eliminated from Ω k).

This means that for each Ωk we can generate a “cleaned”

version Ω̂k of Ωk in which all the redundant columns are

removed. We point out that this elimination can be done

while constructing the matrices Ωk. Indeed any redundant

column of Ωk necessarily produces only redundant columns
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in Ωk−1. Then the procedure for the generation of a reduced

representation Ω
(1)
k is achieved by performing the procedure

described above as follows;

Algorithm

1) For a finite steps number T , suppose we know initial

condition for the state x0 and the final costate condition

p(T ) = c

2) Define Ω
(1)
T = c and set k = 1

3) Compute the next matrix

Ω̂k = [A′
1Ω

(1)
k+1 A′

2Ω
(1)
k+1 . . . A′

NΩ
(1)
k+1]

4) For each column i of Ω̂k

i) Solve the LP (11) with Ωk set to Ω̂k

ii) If µk,i ≥ 1 then delete column i from Ω̂k

5) After examining all the columns, we have a reduced

Ω̂k, set Ω
(1)
k = Ω̂k, set k = k−1.

6) If k ≥ 0 return to (3), otherwise continue

7) The optimal sequence will be given by,

σ(k) = argmini Ω′(1)
k,i x0

�

Therefore, although the exact solution in general is of

exponential complexity, it may be computationally tractable

for problems of reasonable dimension in terms of horizon

and number of matrices.

Remark 1. Note that the algorithm described above gener-

ates a control law that can be implemented for any initial

condition.

�

Remark 2. A dual version of the above algorithm, may be

constructed by taking the forward iterations

Θ
(1)
0 = x(0)

Θ̂
(1)
k+1 = [A1Θ

(1)
k A2Θ

(1)
k . . . ANΘ

(1)
k ]

Then we have that the optimal feedback strategy can be

computed as

σ(k) = argmin
i

Θ′
N−k,ic

so that one can solve the LP problem

νk,i = min
π : Θ′

k,ī
π ≥1̄

Θ′
k,iπ

where Θk,ī is the matrix obtained from Θk by deleting the

i− th column. In this case, if νk,i ≥ 1, then column i of Θk

is redundant and may be removed.

�

Remark 3. For a given initial state x0 and final cost vector c,

we can combine both the reverse and forward time solutions

to, a midpoint (e.g. T/2) and finding min i, j Ω′(1)
T/2,iΘ

(1)
T/2, j

.

�

B. Algorithm 2: Box Constraint Algorithm

The algorithm presented in the last section removes

columns that are redundant for any x in R
+
n . This can be

improved if we derive tighter bounds on x(k) which apply

independent of the switching sequence. If ALB � Ai � AUB

for all i, where bounds can be chosen as ALB = minAi and

AUB = maxAi, then it must be true that

Ak
LBx0 ≤ x(k) ≤ Ak

UBx0 (12)

We can therefore replace (11) with the test:

µk,i = min
x,α : α≥0, Ωk,ī x≥α 1̄, βk

Ω′
k,ix−α (13)

where βk represents the inequality (12). If µk,i ≥ 0 then Ωk,i

is redundant.

C. Algorithm 3: Joint Forward/Backward Box Constraint

Algorithm

Using a box constraint the search space for Algorithm 1 is

reduced. We can apply Remark 3 in order further improved

the last algorithm. Instead of solving T/2 steps forwards and

then T/2 steps backwards and then combining sequences to

get the optimal, we can solve backwards-forwards step by

step in order to make a tighter box constraint as follows:

Algorithm

1) Initialize Ω
(3)
T = c and Θ

(3)
0 = x0, s = 1

one step backward

2) Find

Ω̂
(3)
T−s = [A′

1Ω
(3)
T−s+1 A′

2Ω
(3)
T−s+1 . . . A′

NΩ
(3)
T−s+1]

3) For every ℓ solve the LP given in (13) using the next

tighter box constrained:

AT−2s+1
LB xLB,s−1 ≤ xT−2s+1 ≤ AT−2s+1

UB xUB,s−1

where xLB,s−1 = minℓ Θs−1,ℓ and xUB,s−1 = maxℓ Θs−1,ℓ

4) Delete column Ω̂T−s,ℓ if µT−s,ℓ ≥ α

5) After examining all the columns, set Ω
(3)
T−s = Ω̂

(3)
T−s

one step forward

6) Find

Θ̂
(3)
s = [A1Θ

(3)
s−1 A2Θ

(3)
s−1 . . . ANΘ

(3)
s−1]

7) For every ℓ, remove the column Θ ′
s,ℓ and solve the LP

given in (13) using the tighter box constrained:

A′T−2s
LB πLB,T−s ≤ πs ≤ A′T−2s

UB πUB,T−s

where πLB,T−s = minℓ ΩT−s,ℓ and πUB,T−s =
maxℓ ΩT−s,ℓ.

8) Delete column Θs,ℓ if µs,ℓ ≥ α

9) After examining all the columns, set Θ
(3)
s = Θ̂

(3)
s

10) Increment s. If s ≤ T/2 return to (2). Otherwise

continue

11) Find the optimal sequence from min i, j Ω′(3)
T/2,iΘ

(3)
T/2, j

�
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V. APPLICATION TO A MATHEMATICAL MODEL OF

VIRUS MUTATION TREATMENT

In this section, we study a particular application of the

switched control in positive systems theory described in

the previous sections. For this purpose, we focus on the

problem of treatment scheduling to minimize the adverse

effects of virus mutation in HIV infection. Viral mutation is

problematic since it gives rise to drug resistance if a single

drug or single drug combination is given. For this purpose

we use a simple model proposed by [9], such model is

simple enough to allow control analysis and optimization

of treatment switching.

A. Mutation base model

The based model we consider has n different viral geno-

types, with viral populations, xi : i = 1, ...n; and D different

possible drug therapies that can be administered, represented

by σ(t) ∈ {1, ...D}, where σ is permitted to change with

time, t. We represent the behavior by an ordinary differential

equation:

ẋi(t) = ρi,σ(t)xi(t)− δxi(t)+ ∑
j 	=i

µmi, jx j(t) (14)

where µ is a small parameter representing the mutation rate,

δ is the death or decay rate and m i, j ∈ {0,1} represents

the genetic connections between genotypes, that is, m i, j = 1

if and only if it is possible for genotype j to mutate into

genotype i. Equation (14) can be rewritten in vector form as

ẋ(t) =
(
Rσ(t) − δ I

)
x(t)+ µMx(t) (15)

where M := [mi j] and Rσ(t) := diag{ρi,σ(t)}.

B. A 4 variant, 2 drug combination model

As simple motivating example, we take a model with 4

genetic variants, that is n = 4, and 2 possible drug therapies,

D = 2. The viral variants (also called ‘genotypes’ or ‘strains’)

are described as:

• Wild type genotype (WTG): In the absence of any drugs,

this would be the most prolific variant. However, it is

also the variant that both drug combinations have been

designed to combat, and therefore is susceptible to both

therapies.

• Genotype 1 (G1): A genotype that is resistant to therapy

1, but is susceptible to therapy 2.

• Genotype 2 (G2): A genotype that is resistant to therapy

2, but is susceptible to therapy 1.

• Highly resistant genotype (HRG): A genotype, with

low proliferation rate, but that is resistant to all drug

therapies.

We take parameters values from [9]; the viral clearance

rate is δ = 0.24 day−1 which corresponds to a half life of

slightly less than 3 days and proliferation rates are shown

in Table I. Typical viral mutation rates are of the order of

µ = 10−4. We take a mutation graph that is symmetric and

Therapy�2

WTG G1

p
y
�1

T
h
e
ra
p

G2 HRGG2 HRG

Fig. 1. Mutation Tree

Variant Therapy 1 Therapy 2

Wild type (x1) ρ1,1 = 0.05 ρ1,2 = 0.05
Genotype 1 (x2) ρ2,1 = 0.27 ρ2,2 = 0.15
Genotype 2 (x3) ρ3,1 = 0.01 ρ3,2 = 0.25

HR Genotype (x4) ρ4,1 = 0.27 ρ4,2 = 0.27

TABLE I

REPLICATION RATES FOR VIRAL VARIANTS AND THERAPY

COMBINATIONS FOR AN ASYMMETRIC CASE

circular, see Fig.1. That is, we allow only the connections:

WT ↔ G1, G1 ↔ HRG, HRG ↔ G2 and G2 ↔ W TG.

Other connections would require double mutations and for

simplicity, we consider these to be of negligible probability.

This leads to the mutation matrix:

M =





0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0



 (16)

C. Cost Function Motivation

For biological reasons, if the total viral load is small

enough during a finite time of treatment, then there is a

significant probability that the total virus load becomes zero

and stays at zero. Notice that in a more accurate stochastic

model of viral dynamics, x i(t) is the expected value of the

number of virus vi. Therefore, from Markov’s inequality, we

can show that small E[x] guarantees a high probability of

viral extinction (P(∑i vi = 0)≥ 1−E[∑i vi] = 1−∑i xi). It is

therefore logical to propose a cost

J := c′x(T ) (17)

where c is the column vector with all ones, and T is an

appropriate final time.
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Fig. 2. Total virus load using optimal treatment in continuous line and
using switch on failure in dashed line
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Fig. 3. Optimal switching rule in continuous line and switch on failure
rule in dashed line

VI. SIMULATION RESULTS

The model for the treatment of viral mutation given in (14)

is described in continuous time. In practice, measurements

can only reasonably be made infrequently. For simplicity,

we consider a regular treatment interval τ , during which

treatment is fixed. If we use k ∈ N to denote the number

of intervals since t = 0, then

x(k + 1) = Aσ(k)x(k) (18)

where x(k) = x(kτ) is the sampled state, Aσ := exp(Rσ −δ I+
µM)τ and σ is constant during the interval t ∈ [kτ,(k+1)τ].

The decision time τ is fixed to 28 days, note that typically

during the treatment of HIV, clinical visits have a frequency

of once a month or less. Using the parameter values of
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Fig. 4. Four genotypes dynamic under optimal treatment

TABLE II

TOTAL VIRAL LOAD CONCENTRATION AT THE END OF TREATMENT OF

336 DAYS USING DECISION TIME OF 28 DAYS

Monotherapy Switched on failure Optimal Treatment

9.89×106 344.66 42.56

Table I we consider three different scenarios of treatment;

one is using a single therapy without switching, which

is called monotherapy. Then we consider a “switched on

failure” treatment, based on the guidelines for the use of the

antiretroviral agents in HIV-1 infected adults presented by

the Department of Health and Human Services (DHHS) [11],

which recommends to switch of treatment when HIV RNA

is over 1000 copies/ml (treatment failure). To end, we want

to compute the optimal switching rule in order to minimize

the total viral load concentration at the end of the treatment.

We can observe in Table II, which presents simulated

results after 336 days of treatment, that there is a significant

difference in the total viral load between the monotherapy

and switched on failure treatment. This is because treatment

2 is introduced around week 35, see Fig.2, then the prolif-

eration rate of genotype 1 is affected, giving a decreased

in the total viral load. However, using an optimal control

approach, the viral load is decreased to undetectable levels

(≤ 50 copies/ml) introducing treatment 2 as is portrayed in

Fig.3. This optimal switching rule was computed using the

algorithms proposed in Section IV. Fig.4 shows how during

a period of time the optimal switching rule, maintains a low

wild type concentration and suppresses the concentrations of

genotypes 1 and 2. However, the highly resistant genotype

eventually grows since none of the therapies affect this

genotype.

Using switched on failure treatment and the optimal one
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in Fig.2, we conclude that prior treatment is important to

suppress HIV RNA levels maximally and prevent further

selection of resistant mutations. However, to find the optimal

trajectories is difficult, because the system of equations (6)

is a two point boundary value problem, with additional

complexities arising from the discrete nature of the switching

signal. One possible numerical solution is a “brute force” ap-

proach which analyzes all possible combinations for therapy

1 and 2 with decision time τ = td for a period of T days,

that is, we evaluate 2
T
td possible treatment combinations.

To examine long simulation times, it is necessary to find

faster algorithms. In Table III we test the algorithms for 15

steps of simulation; and it can be seen that “brute force” is

extremely slow for this period of simulation, this is because

we are analyzing 4096 columns. Using algorithm 1 we

can get a faster simulation, removing redundant columns.

At the end of the optimization 11 columns are remain; a

reduction of 99.7% of columns respect to “brute force”’ and

computational time is reduced dramatically. Using the box

constrained algorithm this problem can be solved in less

time. Starting from initial and end points, Remark 3 can

TABLE III

COMPUTATIONAL RESOURCES

Method Brute Force Algorithm 1 Box Constraint

Time (sec) 555 4.44 3.88

Columns 4096 11 1

reduce computational time in last algorithms, that is for every

step in both directions we keep less columns compare to a

single direction algorithm.

Table IV shows that the box constraint algorithm using

Remark 3 has a lower computation time than algorithm 1.

Moreover, we obtain further improvement using algorithm 3;

the process of removing columns is more effective than other

algorithms due to the tighter box constraint. These results

show that we can compute a treatment sequence in a short

period of time. For example, 48 decision steps can be solved

using algorithm 3 in 6.5 mins, something that is impossible

with “brute force”.

TABLE IV

COMPUTATIONAL RESOURCES USING REMARK 1.

Method Algorithm 1 Box Constraint Algorithm 3

Time (sec) 3.3 2.3 1.74

Forward Columns 7 3 1

Backward Columns 10 6 2

VII. CONCLUSIONS

The problem of optimal scheduling treatment to mitigate

the viral escape in HIV has been addressed. Using a switched

system for modeling HIV mutation treatment the optimal

control is developed through Hamilton-Jacobi theory, result-

ing in a difficult two boundary condition problem. For this

purpose we use a “brute force” algorithm in order to analyze

every possible sequence. However, this approach results in

an exponential growth in computational demands. To deal

with this problem we design algorithms for a general class of

switched systems using linear programming able to remove

redundant columns based on dynamic programming methods.

Simulation results show the effectiveness of these methods.
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