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SUMMARY

This paper has been motivated by the problem of viral mutation in HIV infection. Under simplifying
assumptions, viral mutation treatment dynamics can be viewed as a positive switched linear system. Using
linear co-positive Lyapunov functions, results for the synthesis of stabilizing, guaranteed performance
and optimal control laws for switched linear systems are presented. These results are then applied to a
simplified human immunodeficiency viral mutation model. The optimal switching control law is compared
with the law obtained through an easily computable guaranteed cost function. Simulation results show the
effectiveness of these methods. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many systems encountered in practice involve a coupling between continuous dynamics and discrete
events. Hybrid systems constitute a relatively new and very active area of current research. Switched
systems are a class of hybrid systems where the discrete events take a particular simplified form.
They present interesting theoretical challenges and are important in many real-world problems [1].
Stability of these systems is not a trivial problem. Switching between individually stable subsystems
may cause instability and conversely, switching between unstable subsystems may yield a stable
switched system. This kind of phenomena justifies the recent interest in the area of switched
systems. In particular, stability analysis of continuous time switched linear systems has been
addressed in [2–6]. Moreover, there have been advances in discrete-time switched systems, for
example, [7–10] provide excellent overviews. The problem of determining optimal switching
trajectories in hybrid systems has been widely investigated as well, both from theoretical and from
computational points of view [11–14]. For continuous-time switched systems, several prior works
present necessary and/or sufficient conditions for a trajectory to be optimal, using Pontryagin’s
minimum principle [15, 16].

Positive systems [17], have a peculiar and important property that any nonnegative input and
nonnegative initial state generates a nonnegative state trajectory and output for all future times.
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Common examples of positive systems include, chemical processes (reactors, heat exchangers,
distillation columns, storage systems), stochastic models where states represent probabilities, and
many other models used in biology, economics and sociology. While both nonlinear and linear
positive systems have been studied, much recent attention has focused on both time-varying
systems and time-invariant linear positive systems and on the Metzler matrices that characterize the
properties of such systems. Stabilization of positive systems has been studied since it is problematic
to fulfill the positivity constraint on the input variables [18–20]. A few recent works in switched
positive systems [21, 22] study the stability problem using co-positive Lyapunov functions.

In this work we are particularly interested in a problem motivated by the treatment of human
immunodeficiency virus (HIV) infection. At the end of 2007, approximately 33.2 million people
were living with HIV, and more than 29 million people have died of the complications occurring in
late stage HIV infection [23]. Drug regimens offer a range of options for controlling the progression
of the infection. Combination antiretroviral therapy (ART) prevents immune deterioration, reduces
morbidity and mortality, and prolongs the life expectancy of people infected with HIV [24–27].
Unfortunately, current therapies are only capable of partially and temporarily halting the replication
of HIV. One of the main problems in HIV infection is that resistant mutations have been described
for all antiretroviral drugs currently in use. This has led to the conclusion that switching therapeutic
options will be required lifelong to prevent HIV disease progression [27]. However, even this ART
sequencing will fail in a proportion of patients in the presence of highly resistant mutants, that is,
mutants resistant to all known drug combinations.

Motivated by the problems of HIV mutation, we examine in simulation studies a simplified
model of HIV mutation. In these examples, the switched positive systems theory allows the design
of switching strategies to delay the emergence of highly resistant mutant viruses. For the purpose
of comparison, we also simulate the strategy proposed in [28], based on the concept of reproductive
capacity, that represents in mathematical terms the overall proliferation ability of a distribution of
viral genotypes.

This paper aims to extend results on the stability and stabilization of continuous-time switched
linear positive system [29], to discrete-time. In addition, this paper addresses the optimal control
problem for this class of systems. The problem of drug combination in virus treatment as an
application is given. The paper is organized as follows. In Section 3, theorems for stability and
guaranteed cost control of switched positive systems in discrete-time are introduced. Next, in
Section 4, optimal control using the discrete time form of the Hamilton–Jacobi–Bellman equations
is addressed. The importance of the developed theory is shown with an application to virus treatment
in Section 5. Section 6 concludes the paper.

2. NOTATION

Throughout, R denotes the field of real number, Rn stands for the vector space of all n-tuples
of real numbers, Rn×n is the space of n×n matrices with real entries, and N denotes the set of
natural numbers. For x in Rn , xi denotes the i th component of x , and the notation x�0 means
that xi�0 for 1�i�n. Rn+ ={x∈Rn : x�0} denotes the non-negative orthant in Rn . Matrices or
vectors are said to be positive (non-negative) if all their entries are positive (non-negative); this is
written as A�0 and A�0, where 0 is the zero-matrix of the appropriate dimension. We write A′
for the transpose of A, and exp(A) for the matrix exponential of A.

3. DISCRETE STATE-SWITCHING CONTROL

Consider a discrete time switched system of the following general form

x(k+1)= A�(k)x(k) (1)
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defined for all k∈N where x ∈Rn is the state, �(k) is the switching sequence, and x(0)= x0 is the
initial condition. For (1) to be a positive system for any switching sequence, Ai , i =1, . . . ,N must
be nonnegative matrices, that its entries are ail j�0, ∀(l, j ), l �= j , i =1,2, . . . ,N . For each k∈N,

�(k)∈{1,2, . . . ,N} (2)

Clearly, (2) constrains A�(k) to jump among the N vertices of the matrix polytope A1, . . . , AN . We
assume that the full state vector is available and the control law is a state feedback

�(k)=u(x(k)) (3)

The control will be a function u(•): RN →{1, . . . ,N}. Consider the simplex

� :=
{
�∈RN :

N∑
i=1

�i =1,�i �0

}
(4)

which allows us to introduce the following piecewise co-positive Lyapunov function:

�(x(k)) := min
i=1,. . .N

�′
i x(k)=min

�∈�

N∑
i=1

�i�
′
i x(k) (5)

Now let us define a class of matrices, that we will denote by M, consisting of all matrices
�∈RN×N with elements �i j , such that

�i j�0, ∀i �= j,
N∑
i=1

�i j =0, ∀ j (6)

The following result provides a sufficient condition for the existence of a switching rule that
asymptotically stabilizes the system.

Theorem 1
Assume that there exist a set of positive vectors �1, . . . ,�N , �i ∈Rn+, and �∈M, satisfying the
coupled co-positive Lyapunov inequalities:

(Ai − I )′�i +
N∑
j=1

� j i� j ≺0 (7)

The state-switching control with

u(x(k))=arg min
i=1,. . .,N

�′
i x(k) (8)

makes the equilibrium solution x=0 of the system (1) globally asymptotically stable (in the
positive orthant), with Lyapunov function �(x(k)) given by (5).

Proof
Recalling that (6) is valid for �∈M and that �′

j x(k)��′
�(k)x(k) for all j= i=1, . . . ,N , we have

��(k)=�(x(k+1))−�(x(k))= min
j=1,.. .,N

{�′
j x(k+1)}− min

j=1,.. .,N
{�′

j x(k)}

= min
j=1,.. .,N

{�′
j A�(k)x(k)}− min

j=1,. . .,N
{�′

j x(k)}

By definition of �(k) we have min j=1,.. .,N {�′
j x(k)}=�′

�(k)x(k) and therefore

��(k)� �′
�(k)A�(k)x(k)−�′

�(k)x(k)

� �′
�(k)(A�(k)− I )x(k)
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From (7), with x(k) �=0, it follows

��(k)< −
N∑
j=1

� j�(k)�
′
j x(k)

� −
N∑
j=1

� j�(k)�
′
�(k)x(k)

= 0 �

Remark 1
Notice that (7) is the mean square stability condition for the positive system subject to Markovian
switching with the discrete-time transition rate matrix �+ I . See [30] for the continuous-
time case. So, this result is deeply connected to the theory of linear jump systems, see [31].
When the transition matrix � is fixed, the provided conditions are linear, so that it allows
the incorporation of additional state constraints, see, for example, the linear programming
approach in [32].

In a similar vein, it is possible to assure an upper bound on an optimal cost function. Let qi be
positive vectors, i =1,2, . . . ,N , and consider the cost function;

J =
∞∑
k=0

q ′
�(k)x(k) (9)

then, the following result provides an upper bound on the optimal value Jo of J .

Lemma 1
Let qi ∈Rn+ be given. Assume that there exist a set of positive vectors {�1, . . .�N }, �i ∈Rn+ and
�∈M, satisfying the coupled co-positive Lyapunov inequalities;

(Ai − I )′�i +
N∑
j=1

� j i� j +qi ≺0,∀i (10)

The state-switching control given by (8) makes the equilibrium solution x=0 of the system (1)
globally asymptotically stable and

Jo�
∞∑
k=0

q ′
�(k)x(k)� min

i=1,. . .,N
�′
i x0 (11)

Proof
If (10) holds, then (7) holds as well, then we can say that the equilibrium point x=0 for system
(1) is globally asymptotically stable. In addition, by mimicking the proof of Theorem 1, we can
prove that

��(x(k)) = �(x(k+1))−�(x(k))

� −q ′
�(k)x(k)

Hence

∞∑
k=0

��(x(k))�−
∞∑
k=0

q ′
�(k)x(k)

∞∑
k=0

q ′
�(k)x(k)��(x(0))−�(x(∞))
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therefore
∞∑
k=0

q ′
�(k)x(k)� min

i=1,. . .,N
�′
i x0 �

Remark 2
For fixed � j i in order to improve the upper bound provided by Lemma 1, one can minimize
mini �′

i x0 over all possible solutions of the linear inequalities (10).

Coupled co-positive Lyapunov functions can also be used to compute a lower bound to the
optimal cost.

Lemma 2
Assume that there exist a set of positive vectors �1, . . . ,�N , �i ∈Rn+ and �∈M, satisfying the
coupled co-positive inequalities:

(A j − I )′�i +
N∑

m=1
�mi�m+qi �0, ∀i, j (12)

Then, for any state trajectory such that x(k)→0,

∞∑
k=0

q ′
�(k)x(k)� max

i=1,. . .,N
�′
i x0 (13)

Proof
Let

�(x(k))=max
i

�′
i x(k) (14)

then

�(x(k+1))= max
i=1,. . .,N

{�′
i x(k+1)}

= max
i=1,. . .,N

{�′
i A�(k)x(k)}

�
(

�′
�(k)−

N∑
m=1

�m�(k)�
′
m

)
x(k)−q ′

�(k)x(k)

�
(

�′
�(k)−��(k)�(k)�

′
�(k)−

N∑
m �=�(k)

�m�(k)�
′
m

)
x(k)−q ′

�(k)x(k)

�
(

�′
�(k)−��(k)�(k)�

′
�(k)−

N∑
m �=�(k)

�m�(k)�
′
�(k)

)
x(k)−q ′

�(k)x(k)

� �′
�(k)x(k)−q ′

�(k)x(k)

which implies

�(x(k+1))−�(x(k))�−q ′
�(k)x(k) (15)

so that
∞∑
k=0

q ′
�(k)x(k)� max

i=1,. . .,N
�′
i x0 (16)

�
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Remark 3
Notice that inequalities (7) are not LMI, since the unknown parameters � j i multiply the unknown
vectors � j . If all matrices Ai are Schur matrices, i =1,2, · · ·,N , then a possible choice is � j i =0,
i, j =1,2, · · ·,N , so that inequalities (7) are satisfied by �i = (I −Ai )−1q̄i , where q̄i �qi .

Remark 4
Theorem 1 can be used to guarantee an upper bound to the finite-time optimal control law

JFT =c′x(T ) (17)

where T is the finite time and c�0 is a weight on the final state x(T ). Assume that inequalities (7)
are feasible. Hence, thanks to linearity of (7) in �, it is possible to find �i �0 such that (7) are satisfied
along with the additional constraint c��i , ∀i . Then, c′x(T )�mini �′

i x(T )=�(x(T ))��(x(0))=
mini �′

i x(0).

The theorems and lemmas presented above refer to a cost function over an infinite time horizon
(also recall Remark 3). However, it is possible to slightly modify the relevant inequalities to account
for finite time horizon functionals. To be precise, consider the system (1), the cost function

J =c′x(T )+
T−1∑
k=0

q ′
�(k)x(k) (18)

and the difference equations, for i =1,2, . . . ,N

�i (k)= A′
i�i (k+1)+

N∑
j=1

� j i� j (k)+qi , �i (T )=c (19)

The following result holds.

Theorem 2
Let qi ∈Rn

+, i=1 . . .N be given. Let {�1(k), . . .�N (k)}, �i (k)∈Rn
+ be a set of nonnegative vectors

satisfying (19) where �∈M. The state-switching control

�(k)=arg min
i=1,. . .,N

�′
i (k)x(k) (20)

is such that

c′x(T )+
T−1∑
k=0

q ′
�(k)x(k)� min

i=1,. . .,N
�′
i (0)x0 (21)

Proof
Let V (x(k),k)=mini {x(k)′�i (k)}. Then

V (x(k+1),k+1)=min
i

{x(k+1)′�i (k+1)}=min
i

{x(k)′A′
�(k)�i (k+1)}

� x(k)′A′
�(k)��(k)(k+1)

� V (x(k),k)−x(k)′q�(k)−x(k)′
N∑

r=1
�r�(k)�r (k)

� V (x(k),k)−x(k)′q�(k)−x(k)′��(k)(k)
N∑

r=1
�r�(k)

� V (x(k),k)−x(k)′q�(k)
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so that

J = c′x(T )+
T−1∑
k=0

q ′
�(k)x(k)

� c′x(T )−
T−1∑
k=0

V (x(k+1),k+1)−V (x(k),k)

� c′x(T )−V (x(T ),T ))+V (x0,0)

�min
i

{x ′
0�i (0)} �

Remark 5
Note that in the infinite horizon case, the conditions required, (12), may be infeasible. However,
in the finite horizon case, (19), the equations are always feasible (for example, taking � j i =0),
and for any fixed T can be solved by the reversed time difference Equation (19). If Ai are Schur
matrices, then in the limit and with � j i =0, limT→∞ �i (0)= (I−Ai )−1qi .

Corollary 1
Let q∈Rn+ and c∈Rn+ be given, and let the positive vectors {�1, . . . ,�N }, �i ∈Rn+ satisfy for some
�>0, the modified coupled co-positive Lyapunov equations:

�i (k)= A′
i�i (k+1)+�(� j (k)−�i (k))+qi , i �= j=1, . . . ,N. (22)

with final condition �i (T )=c, ∀i . Then, the state-switching control given by (20) is such that

c′x(T )+
T−1∑
k=0

q ′
�(k)x(k)� min

i=1,. . .,N
�′
i (0)x0 (23)

Proof
Consider any matrix � chosen such that �i i =−�, therefore

�−1
N∑

j �=i=1
� j i =1 ∀i =1, . . . ,N (24)

Using (24), Equations (22) and (19) are equivalent, hence the upper bound of Theorem 2 holds.
�

4. DISCRETE-TIME OPTIMAL CONTROL

In the previous section, we introduced both finite-time and infinite-time horizon upper bounds on
the performance of the optimal feedback strategy. In many applications, it may be important to
compute the optimal control law for a finite horizon cost function. In this section we introduce finite
time optimal control for positive switched systems. In classical control theory, global sufficient
conditions for optimality have been developed as a strengthening of the necessary conditions.
Sufficient conditions introduce certain assumptions about regularity of the system and the behavior
of the cost function, which must satisfy the Hamilton–Jacobi–Bellman equation [33]. Consider a
cost function to be minimized over all admissible switching sequences given by:

J =c′x(T )+
T−1∑
k=0

q ′
�(k)x(k) (25)

where x(k) is a solution of (1) with the switching signal �(k). The vectors c and qi , i =1,2, . . . ,N ,
are assumed to be positive. The optimal switching signal, the corresponding trajectory and the
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optimal cost functional will be denoted as �o(k), xo(k) and J (x0, x0,�0) respectively. Letting
u=�(k), q(k, x,u)=q�(k), and using the Hamilton–Jacobi–Bellman equation for the discrete case,
we have;

V (x,k)=min
u∈U

{q(k, x,u)+V (x(k+1),k+1)} (26)

where, denoting the costate vector by p(k), the general solution for this system is

V (x(k),k)= p(k)′x(k) (27)

Using Equations (1) and (25)–(27), we obtain the following system

xo(k+1)= A�o(k)x
o(k), x(0)= x0

po(k)= A′
�o(k) p

o(k+1)+q�o(k), p(T )=c

�o(k)=arg min
s

{po(k+1)′Asx
o(k)+qsx

o(k)}
(28)

Notice that Equations (28) are inherently nonlinear. The state equations must be integrated forward
whereas the co-state equation must be integrated backward, both according to the coupling condition
given by the switching rule. As a result, the problem is a two-point boundary value problem, and
cannot be solved using regular iteration techniques. A dynamic programming technique will be
discussed next.

4.1. Exact solution of the optimal finite-horizon problem

In this section we first establish an important property of the optimal value function V (see (26)).
Then, we give a procedure to compute the optimal solution. Finally, we show how to determine
a lower bound for the cost that is useful in all cases in which the exact determination is too
computationally demanding.

Lemma 3
For any k, the function V (x,k) is concave and positively homogeneous, as a function of x .

Proof
The fact that the function V (x,k) is positively homogeneous is obvious from (27). To prove
concavity, consider two initial states xA and xB and take any convex combination x=�xA+�xB ,
�,��0 and �+�=1. Let �̄(k) be the optimal sequence associated with initial condition x achieving
the optimal cost J̄ . Let xA(k) and xB(k) be the state sequences corresponding to �̄(k) and the
initial states xA(0)= xA and xB(0)= xB . By linearity of the system we have

x̄(k)=�xA(k)+�xB(k)

Denote by JA and JB the (non-optimal) costs associated with these sequences and denote by J̄A
and J̄B the optimal costs with initial conditions xA and xB . In view of the linearity of the cost
we have

J̄ =�JA+�JB�� J̄A+� J̄B

This proves concavity of V (x,0). The concavity for a generic k can be proved by dynamic
programming arguments. �

Remark 6
Note that if we relax the assumption of positivity of the dynamics, then in general the optimal
value function need not be either convex or concave [34].

The previous lemma has several implications including the fact that given any convex combi-
nation (in a general polytope) of initial conditions, the best cost is achieved on a vertex. This fact
will be used later to determine a lower bound for the cost. Without loss of generality, consider the
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case where q=0, that is, there is a terminal cost only. Note that if this is not the case, we can
introduce a new variable y(k) having equation

y(k+1)= y(k)+q ′x(k)

and initial condition y(0)=0, so that

J =c′x(T )+ y(T ).

In this way the original optimal control problem is reduced to a problem in which only the final
cost J =c′x(T ) is considered.

Given the initial condition x(0) the optimal control problem turns out to be

min
iT ,iT−1,. . .,i1

c′AiT AiT−1 . . . Ai1x(0)

Let us recursively define the sequence of matrices

�0 = c

�1 = [A′
1�0 A′

2�0 . . . A
′
N�0]= [A′

1c A′
2c . . . A

′
N c]

:

�k+1 = [A′
1�k A

′
2�k . . . A

′
N�k]

Then we have that V (x,0)=mini �
′
T ,i x , where �T ,i is the i th column of �T and, in general

V (x,k)=min
i

�′
T−k,i x(k) (29)

At each step of the evolution, the feedback strategy can be computed as

u(x(k))=argmin
i

�′
T−k,i x(k)

namely selecting the smallest component of the vector �′
T−k x(k). One consequence of this fact is

formalized next.

Proposition 1
The function V (x,T ) is concave and piecewise co-positive.

The implementation of the strategy requires storing the columns of �′
T−k x(k) whose number

would be 1+N+N2+N3+·· ·+NT. This exponential growth could be too computationally
demanding. In general, many of the columns of the matrices �k may be redundant and can be
removed. This can be done by applying established dynamic programming methods as follows
(see [35] for details). Given �k,i solve the LP problem

	k,i =min
x

�′
k,i x s.t. �′

kī
x�1̄

where 1̄= [1 1 . . .1]′ and �kī denote the matrix obtained from �k by deleting the i th column.
Then, the column �k,i is redundant (and it should be eliminated from �k) iff 	k,i�1. This means
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that for each �k we can generate a ‘cleaned’ version �̄k of �k in which all the redundant columns
are removed. We point out that this elimination can be done while constructing the matrices �k .
Indeed, any redundant column of �k produces redundant columns in �k+1. Then, the procedure
for the generation of the minimal representation �̄k+1 is achieved by performing the procedure
described above as follows:

• Clean �k and produce a minimal �̄k
• Compute �k+1= [�̄k A1�̄k A2 . . . �̄k AN ]

Therefore, although the exact solution in general is of exponential complexity, it may be compu-
tationally tractable for problems of reasonable dimension in terms of horizon and number of
matrices. One way to further reduce the computational burden is to accompany the above algorithm
(backward iteration) with its dual version (forward iteration). Indeed, consider the sequence of
matrices

�0 = x(0)

�1 = [A1�0A2�0 . . . AN�0]= [A1x(0)A2x(0) . . . AN x(0)]

:

�k+1 = [A1�k A2�k . . . AN�k]

Then we have that the optimal feedback strategy can be computed as

u(x(k))=argmin
i

�′
k,i�

so that one can solve the LP problem


k,i =min
�

�′
k,i�, s.t.�′

kī
��1̄

where �kī is the matrix obtained from �k by deleting the i th column. In this case, if 
k,i�1, then
column i of �k is redundant and may be removed.

Whenever the computation of the exact solution may be impractical, we may take advantage of
the concavity to achieve a lower bound for the cost by solving off-line the problem for a finite
number of initial conditions only. Assume that an optimization horizon T is given along with a
family of initial conditions xk grouped in a matrix

[x1, x2, . . . xp]= X

Let J̄k =V (xk,0) the corresponding optimal costs. Assume also that the vectors of the canonical
basis [00 . . .1 . . .0] are included in the family. Then we have the following.

Proposition 2
For any �i�0 and x=∑N

i=1 �i xi , the piecewise-linear function

V̌T (x)=
N∑

k=0
�i J̄k (30)

is defined over Rn
+ and is a lower bound for the optimal cost: V̌T (x)�V (x,0). Furthermore, V̌T (x)

is interpolating, that is, V̌T (x) is equal to the optimal cost for all vectors x aligned with the selected
points: V̌T (�xk)=V (�xk,0), for �>0.

Proof
For x =0 we have V̌T (0)=V (0,0). So let x ∈Rn+, x �=0, be given and ��0 any feasible solution
of (30), so that x= X�. Note that such a � exists since we included the principal directions, and

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
DOI: 10.1002/rnc



DISCRETE-TIME CONTROL FOR SWITCHED POSITIVE SYSTEMS

then V̌T is defined on Rn+. Denote by �s =
∑N

k=1 �k>0. Then,

V (x,0)= V

(
N∑

k=1
xk�k,0

)
=�sV

(
N∑

k=1

�k
�s
xk,0

)

� �s
N∑

k=1

�k
�s
V (xk,0)=

N∑
k=1

�k Jk

Since the above inequality is valid for all feasible �, it holds for the maximizer, so that

V (x,0)�V̌T (x)

Now take x = x1 and the feasible �= [1 0 0 . . . 0]. Then, by the definition of V̌T

V̌T (x1)�J1=V (x1,0)

so that VT (x1)=V (x1,0). The fact that function VT (x) is positively homogeneous as V (x,0)
implies that VN (�x1)=V (�x1,0) for ��0. The same property holds for the remaining xk and thus
the proof is concluded. �

In the next section, we apply the techniques developed to a simplified mathematical model of
treatment scheduling to ameliorate the effects of virus mutation in HIV infection.

5. APPLICATION TO A MATHEMATICAL MODEL OF VIRUS MUTATION TREATMENT

In this section, we study a particular application of the switched control in positive systems
theory described in the previous sections. For this purpose, we focus on the problem of treatment
scheduling to minimize the adverse effects of virus mutation in HIV. Viral mutation is problematic
since it gives rise to drug resistance if a single drug or single drug combination is given, see
Figure 1. Several mathematical models have been proposed to describe HIV dynamics since 1990.
Most of the models present a basic relationship between immune system cells; CD4+ T cells
that are one of the main targets of the virus, macrophages cells that constitute an alternate target
for HIV replication, infected cells and virus [36–40]. These models used different mechanisms
to explain HIV infection dynamics; however, for this paper we are just interested in the virus
mutation treatment problem. For this reason we proposed a model for mutation dynamics that is

Figure 1. Drug treatment.
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simple enough to allow control analysis and optimization of treatment switching. Based on the
model in [40], we make the following assumptions:

• Constant macrophage and CD4+ T cell counts: The main nonlinearities in the more general
model are bilinear, and all involve either the macrophage or healthy T-cell count. In addition,
under normal treatment circumstances (that is after the initial infection stage, and until full
progression to a dominant highly resistant mutant), typical simulations and/or clinical data
suggest that the macrophage and T-cell counts are approximately constant. This assumption
allows us to simplify the dynamics to being essentially linear.

• Scalar dynamics for each mutant: A more extensive model for HIV dynamics would include
a set of states for each possible genotype such as: Vi (t) (viral concentration); Ti (t) (T cells
infected by mutant i); Mi (t) (macrophages infected by mutant i) etc. To simplify the model,
we focus on the viral load, Vi (t), only. If the dynamics of the ‘group’ (Ti ,Mi ,Vi , . . .) is linear,
many of the techniques here generalize in a straightforward way.

• Viral clearance rate independent of treatment and mutant: Although in some cases, particularly
in view of the earlier assumption of representing the dynamics as scalar, viral clearance rate
might well depend on one or more of the treatment regime, or the viral genetics; for simplicity,
we take this as a constant.

• Mutation rate independent of treatment and mutant: In a similar vein, we assume that the
mutation rate, between species with the same genetic distance, is constant. In practice, there
will be some dependence of mutation rate on the replication rate, and therefore there will be
some relationship between mutant, treatment and mutation rate.

• Deterministic model: In this paper we are interested in deriving control strategies with either
optimal or ‘verifiable’ performance. To simplify the control design we base the design on a
deterministic model. This is a significant limitation, though we note that under the assumption
of linearity, the deterministic model does describe the expected behavior of a fuller stochastic
model.

5.1. Mutation base model

The base model we consider has n different viral genotypes, with viral populations, xi : i=1, . . .n;
and D different possible drug therapies that can be administered, represented by �(t)∈{1, . . .D},
where � is permitted to change with time, t . We represent the behavior by an ordinary differential
equation:

d

dt
{xi (t)}=�i,�(t)xi (t)−xi (t)+

∑
j �=i

	mi j x j (t) (31)

where 	 is a small parameter representing the mutation rate,  is the death or decay rate and
mi j ∈{0,1} represents the genetic connections between genotypes, that is, mi j =1 if and only if
it is possible for genotype j to mutate into genotype i . Equation (31) can be rewritten in vector
form as

d

dt
{x(t)}= (R�(t)−I )x(t)+	Mx(t) (32)

where M := [mi j ] and R�(t) :=diag{�i,�(t)}.

5.2. A 4 variant, 2 drug combination model

As simple motivating example, we take a model with 4 genetic variants, that is n=4, and 2 possible
drug therapies, D=2. The viral variants (also called ‘genotypes’ or ‘strains’) are described as:

• Wild type (WT): In the absence of any drugs, this would be the most prolific variant. However,
it is also the variant that both drug combinations have been designed to combat, and therefore
is susceptible to both therapies.

• Genotype 1 (G1): A genotype that is resistant to therapy 1, but is susceptible to therapy 2.
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Figure 2. Mutation graph.

Table I. Replication rates for viral variants and therapy combinations for a symmetric case.

Variant Therapy 1 Therapy 2

Wild type (x1) �1,1=0.05 �1,2=0.05
Genotype 1 (x2) �2,1=0.40 �2,2=0.05
Genotype 2 (x3) �3,1=0.05 �3,2=0.40
HR Genotype (x4) �4,1=0.30 �4,2=0.30

• Genotype 2 (G2): A genotype that is resistant to therapy 2, but is susceptible to therapy 1.
• Highly resistant genotype (HRG): A genotype, with low proliferation rate, but that is resistant
to all drug therapies.

We take the viral clearance rate [41] as =0.24day−1 which corresponds to a half life of slightly
less than 3 days. Typical viral mutation rates are of the order of 	=10−4. We take a mutation graph
that is symmetric and circular, see Figure 2. That is we allow only the connections: WT↔G1,
G1↔HRG, HRG↔G2 and G2↔WT. Other connections would require double mutations and
for simplicity, we consider these to be of negligible probability. This leads to the mutation matrix:

M=

⎡
⎢⎢⎢⎢⎣
0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

⎤
⎥⎥⎥⎥⎦ (33)

We also describe the various replication rates in the Table I. These numbers are of course idealized,
however, the general principles they are based on are:

• Symmetry: We do not expect a large difference in relative proliferation ability, although there
will be some differences. Furthermore, a more detailed model would also include asymmetry
in the genetic tree, which would usually have a much more complex structure than a simple
cycle.

• Genetic distance from wild type reduces fitness: In the absence of effective drug treatments,
we might expect that fitness (that is, reproduction rate) decreases with genetic distance from
the wild type, which we expect to be most fit. This need not always be true, but is a useful
starting point.
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• Therapy at best 90% effective: In the absence of drugs, from typical data, we might expect
an overall viral proliferation rate (with high, constant T-cell count) of approximately �=
0.5day−1. This would correspond to an exponential explosion rate, from near the uninfected
equilibrium, with a doubling time of approximately 3 days. Under drug therapy, we drop the
replication rate by a factor of 10. Genotype 1 replication rate is lower under drug therapy 1
(equivalently, no therapy) at �=0.4, and the highly resistant genotype replication is lower
again.

5.3. Cost function motivation

For biological reasons, if the total viral load is small enough during a finite time of treatment, then
there is a significant probability that the total virus load becomes zero and stays at zero. Notice that
in a more accurate stochastic model of viral dynamics, xi (t) is the expected value of the number
of virus vi . Therefore, from Markov’s inequality, we can show that small E[x] guarantees a high
probability of viral extinction (P(

∑
i vi =0)�1−E[

∑
i vi ]=1−∑i xi ). It is therefore logical to

propose a cost

J :=c′x(t f ) (34)

where c is the column vector with all ones, and t f is an appropriate final time. This cost should
be minimized under the action of the switching rule. Another interesting interpretation of the cost
relies on the theory of Markov jump linear systems. Indeed, notice that the state, Equation (31)
can be written as follows:

d

dt
{xi (t)}=�i,u(t)xi (t)+	

∑
j �=i

�i j x j (t) (35)

where �i,u(t)=�i,u(t)+2	− and �i, j =mi, j , i �= j , �i,i =−2. Notice that matrix: 	�, where �=
{�i, j } is a stochastic matrix, which can be considered as the infinitesimal transition matrix of the
Markov jump linear system

�̇=0.5�i,u(t)� (36)

Moreover,
∑n

i=1 xi (t)= E[�2(t)]. Minimizing
∑n

i=1 xi (t) is then equivalent to minimizing the
variance of the stochastic process �(t). Notice that if limt→∞E[�2(t)]=0, then the system (36) is
stable in the mean-square sense.

5.4. Simulation results

The model for the treatment of viral mutation given in (31) is described in continuous time.
In practice, measurements can only reasonably be made infrequently. For simplicity, we consider a
regular treatment interval �, during which treatment is fixed. If we use k∈N to denote the number
of intervals since t=0, then

x(k+1)= A�(k)x(k) (37)

where x(k)= x(k�) is the sampled state and A� :=exp(R�−I +	M)�. Because the system (37)
is frequently not stabilizable, we introduce exponential weighting to new coordinates x̃(k+1)=
Ã�(k) x̃(k) where Ã� := A�−�I , ��0 is chosen to ensure stability, x̃ is the transformation given
by x̃(k)=exp(−�k)x(k�), and � is constant during the interval t ∈ [k�, (k+1)�]. Associated with
the system (37), we consider the cost

J∞ :=
∞∑
k=0

q ′x̃(k) (38)

where q is column vector with ones. Then, a guaranteed cost switching rule for the transformed
system is:

�(x̃(k)) :=argmin
i

{x̃(k)′�i }=argmin
i

{x(k)′�i } (39)
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Figure 3. Performance of guaranteed cost control using (39).

where �i is given by

�i :=−(Ã′
i − I )−1q (40)

Notice that, since Ãi is a Schur matrix, − Ã′
i + I is an M-matrix, whose inverse is a positive matrix,

so that the vectors �i in (39) are positive. The control rule (39) guarantees an upper bound on the
cost function, i.e.

J∞<min
i

x̃ ′
0�i (41)

Then we can write

J :=
∞∑
0
exp(−�k)q ′x(k�)<min

i
x ′
0�i (42)

We take the decision time � equal to 20 days. Note that typically during the treatment of HIV,
clinical visits have a frequency of once a month or less. Using the parameter values of Table I
and the control rule in (39), we see in Figure 3 that for an initial period of time, the switching
rule maintains a low wild-type concentration and suppresses the concentrations of genotypes 1
and 2. However, the highly resistant genotype eventually grows since none of the therapies affect
this genotype. The decision variables for this example, and the consequent control rule based on
(29), are illustrated in Figure 4. For this important application, we are interested in comparing the
performance of the control (39) with other strategies. If we use a guaranteed cost control over a
finite period of time proposed in Theorem 2, the condition that all matrices Ai are Schur matrices
can be removed, therefore �=0. Using Corollary 1, the switching rule is given by

�(x(k),k) :=argmin
i

{x(k)′�i (k)} (43)

We need to solve backward in time the system (22) with final condition �(T )=c. Both guaranteed
cost controls have the same performance as can be seen in Table II, this is because the symmetry
of the replication rates values, in Table I. We are also interested in the optimal control problem
(28), where we take q=0, that is

J :=c′x(t f )=c′ exp(�T )x̃ (T ), t f =�T (44)

The system of Equations (28) is a two-point boundary value problem, with additional complexities
arising from the discrete nature of the switching signal. One possible numerical solution is a ‘brute
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Table II. Total viral load concentration for the symmetric case at the end of treatment of 200 days using
decision time of 20 days.

Guaranteed cost control

Infinite-time Finite-time Optimal control Existing control Single therapy

664.99 664.99 664.99 870.80 3.05×1013

Figure 4. Switched control given by the rule in (39).

force’ approach, which analyzes all possible combinations for therapies 1 and 2 with decision
time �= td for a period of T days, that is, we evaluate 2T/td possible treatment combinations.
For comparison purposes, we consider the total viral load at the end of the treatment. Thus,
J =exp(�T )x̃(T )′c is computed in Table II for the guaranteed cost control. We can see in Figure 5
how the optimal control gives the same treatment as the guaranteed cost control, and these control
strategies give the same total viral load at the end of the treatment as can be seen in Table II. Clearly,
there is also a very dramatic difference compared to a non-switching approach to this problem.
Furthermore, note that in this example guaranteed cost controls have slightly better performance
at the end of the therapy than the control proposed by [28]. If we analyze the last results we notice
that in this particular case guaranteed cost controls have the same performance as the optimal
rule, even though different initial conditions are considered. However, at this point in time, we
are not aware of any proof that there are circumstances under which the control given by (39) is
the same as the optimal control. Simulation results show regular behavior in the control rule due
to the symmetry of values in Table I. In practice, it is unrealistic to expect complete symmetry
in the viral response to alternate treatments. As a further example, we consider an asymmetric
configuration as is shown in Table III. Table IV displays the results for various switching rules;
first, we note finite time guaranteed cost control gives superior performance to its infinite horizon
counterpart. In addition, both guaranteed cost controls have a superior performance with respect
to the control proposed by [28]. The guaranteed cost control over finite time horizon shows viral
load concentration close to the optimal control and inferior to the other strategies.
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Figure 5. Control law and decision variables for optimal control.

Table III. Replication rates for viral variants and therapy combinations for an asymmetric case.

Variant Therapy 1 Therapy 2

Wild type (x1) �1,1=0.05 �1,2=0.1
Genotype 1 (x2) �2,1=0.25 �2,2=0.05
Genotype 2 (x3) �3,1=0.10 �3,2=0.30
HR Genotype (x4) �4,1=0.30 �4,2=0.30

Table IV. Total viral load concentration for the asymmetric case at the end of treatment of 200 days using
decision time of 20 days.

Guaranteed cost control

Infinite-time Finite-time Optimal control Existing control Single therapy

185.95 159.30 152.59 197.04 9.96×104

6. CONCLUSIONS

We have introduced stability conditions for the switched positive systems in discrete-time. They
have been used for the synthesis of the switching rules, for which a guaranteed cost function can be
associated. In addition, the optimal control problem in discrete time for switched positive systems
is addressed and the development of sufficient conditions for optimality are developed through
Hamilton–Jacobi theory. These strategies are applied to a specific virus mutation problem. Numer-
ical results show that in the specific symmetric example studied, guaranteed cost controls have the
same performance as the optimal control. For the asymmetric example, the best performance is
given by the guaranteed cost control over finite time horizon, which has a performance very close
to the optimal rule. From these examples we see that using different drugs at the right moment is
of great importance for patient treatment.
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