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Abstract: The optimal control problem for a particular class of switched systems is addressed
in this paper. Using a linear co–positive cost function, a necessary and sufficient condition
for optimal control is derived. Optimal states and costates can lie on a sliding surface, and this
corresponds to a chattering switching law. Due to the complexity of exact solution of the general
optimal control problem, we introduce a suboptimal, guaranteed cost algorithm, associated with
the optimal problem. These results are then applied to a simplified model of HIV viral mutation
dynamics, which under simplifying assumptions can be viewed as a positive switched linear
system. Simulations compare the optimal switching control law with the sub-optimal guaranteed
cost approach.
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1. INTRODUCTION

The problem of determining optimal switching trajectories
in hybrid systems has been widely investigated, both from
theoretical and from computational point of view [1], [2],
[3] and [4]. For continuous-time switched systems, several
prior works present necessary and/or sufficient conditions
for a trajectory to be optimal, with the introduction of
the minimum principle [5] and [6]. However, there is not a
general solution for the problem.

Motivated by the problems of HIV (human immunode-
ficiency virus) infection, we examine a simplified model
proposed by [9]; in this paper, positive switched systems
allows the design of switching strategies to delay the emer-
gence of highly resistant mutant viruses. Drug regimens
offer more potent, less toxic and more durable choices.
Combination antiretroviral therapy (ART) prevents im-
mune deterioration, reduced morbidity and mortality, and
prolongs the life expectancy of people infected with HIV
[7]. Unfortunately, current therapies are only capable of
partially and temporarily halting the replication of HIV.
One of the main problems in HIV infection is that resistant
mutations have been described for all antiretroviral drugs
currently in use. This has led to the conclusion that switch-
ing therapeutic options will be required lifelong in order
� This work was supported by Science Foundation of Ireland
07/RPR/I177 and 07/PI/I1838.

to prevent HIV disease progression [7]. However, even this
ART sequencing will fail in a proportion of patients in
the presence highly resistant mutants, that is, mutants
resistant to all know drug combinations.

This paper addresses the optimal control problem for a
class of switched systems. The problem of drug combina-
tion in virus treatment as an application is given. The
paper is organized as follows. Theorems for stability and
guaranteed cost control of switched positive systems are in-
troduced in Section 2. The importance of switched positive
systems is shown with an application to virus treatment
in Section 3. A complete characterization of the optimal
switching rule is provided for a particular case. Numerical
examples are provided in Section 4. Finally, Section 5
concludes the paper.

Throughout, R denotes the field of real number, R
n stands

for the vector space of all n-tuples of real numbers, R
n×n

is the space of n × n matrices with real entries, and N

denotes the set of natural number. A matrix is said to
be Metzler if all its off-diagonal entries are non-negative.
We write A′ for the transpose of A, and exp(A) for the
usual matrix exponential of A. The symbol Sgn denotes
the sign function, that takes value 1 when its argument
is positive and −1 when its argument is negative. Finally
co(X1, X2, · · · , XN) denotes a convex combination of the
matrices Xi.
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2. OPTIMAL CONTROL

Consider the following positive switched linear system on
a finite time interval,

ẋ(t) = Aσ(t)x(t), x(0) = x0, (1)
where t ≥ 0, x(t) ∈ R

n
+ is the state variable vector, σ(t)

is the switching signal, x0 ∈ R
n
+ is the initial condition

and Ai belongs to a set of Metzler matrices {A1, . . . , AN}.
The cost functional to be minimized over all admissible
switching sequences is given by

J(x0, x, σ) =
∫ T

0

q′σ(τ)x(t)dt + c′x(T ) (2)

where x(t) is a solution of (1) with the switching sig-
nal σ(t). Vectors qi, i + 1, 2, · · · , N are assumed to have
nonnegative entries and c is assumed to have all positive
entries. The optimal switching signal, the corresponding
trajectory and the optimal cost functional will be de-
noted as σo(t, x0), xo(t) and J(x0, x

o, σo) respectively.
The Hamiltonian function relative to system (1) and cost
functional (2) is given by

H(x, σ, p) = q′σx + π′Aσx (3)
Theorem 1. Let σo(t, x0) : [0, T ]× R

n
+ → I = {1, . . . , N}

be an admissible switching signal relative to x0 and xo(t)
be the corresponding trajectory. Let πo(t) denote a posi-
tive vector solution of the system of differential equations

ẋo(t) = Aσo(t,x0)x
o(t) (4)

−π̇o(t) = A′σo(t,x0)
πo(t) + qσo(t,x0) (5)

σo(t, x0) = argmin
i∈I
{πo′(t)Aix

o(t) + q′ix
o(t)} (6)

with the boundary conditions xo(0) = x0 and πo(T ) = c.
Then σo(t, x0) is an optimal switching signal relative to x0

and the value of the optimal cost functional is

J(x0, x
o, σo) = π′o(0)x0 (7)

Proof The scalar function

v(x, t) = πo(t)′x (8)
is a generalized solution of the Hamilton-Jacobi

0 =
∂v

∂t
(x, t) + H

(
x(t), σo(t, x0),

∂v

∂x
(x, t)′

)
(9)

where

H(x, σ, p) = q′σx + π′Aσx (10)
Notice that the triple (xo, πo, σo) satisfies the necessary
conditions of the Pontryagin principle, since

H(xo, σo, πo) ≤ H(xo, σ, πo), σ = 1, 2
Moreover,

∂v

∂x
(x, t) = π(t)′ (11)

∂v

∂t
(x, t) = π̇(t)′x (12)

so that, for almost all t ∈ [0, T ]

π̇o(t)′xo(t) + q′σo(t,x0)
xo(t) + πo(t)′Aσo(t,x0)x

o(t) (13)

Moreover it satisfies the boundary condition

v(xo(T ), T ) = πo(T )′xo(T ) = c′xo(T ) (14)
This completes the proof.

Notice that computation of the optimal control law as
discussed in Theorem 1 is quite demanding, this is due
to the two point boundary value problem.

2.1 Guaranteed cost

Due to the complexity of exact solution of the general
optimal control problem as in Theorem 1, in this section
we introduce a suboptimal, guaranteed cost algorithm
associated with the optimal control problem. To this end,
define the simplex

Λ :=

{
λ ∈ R

N :
N∑

i=1

λi = 1, λi ≥ 0

}
(15)

which allows us to introduce the following piecewise co-
positive Lyapunov function:

v(x) := min
i=1,...,N

α′ix = min
λ∈Λ

(
N∑

i=1

λiα
′
ix

)
(16)

The Lyapunov function in (16) is not differentiable ev-
erywhere. In particular, let us define the set I(x) = {i :
v(x) = α′ix}. Then v(x) fails to be differentiable precisely
for those x ∈ Rn

+ such that I(x) is composed of more
than one element, that is in the conjunction points of the
individual Lyapunov functions α′ix. Now we will denote
by M the subclass of Metzler matrices with zero column
sum, that is all matrices P ∈ R

N×N with elements pji,
such that

pji ≥ 0 ∀j �= i,
N∑

j=1

pji = 0 ∀j. (17)

As a consequence, any P ∈ M has an eigenvalue at zero
since c′P = 0, where c′ = [1 · · · 1]. We are now ready to
formulate the main result on the guaranteed cost control
of the system (1).
Theorem 2. Consider the linear positive switched system
(1) and let the nonnegative vectors qi be given. Moreover,
take any P ∈ M, and let {α1, . . . , αN}, αi ∈ R

n
+ the

positive solutions of the differential equations

α̇i + A′iαi +
N∑

j=1

pjiαj + qi � 0, i = 1, . . . , N (18)

with final condition αi(t) = c, ∀i. Then, state-switching
rule

σ(x(t)) = arg min
i=1,...,N

α′i(t)x(t) (19)

is such that∫ T

0

q′σ(τ)x(t)dt + x(T )′c ≤ min
i=1,...,N

α′i(0)x0 (20)
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Proof Consider the Lyapunov function
v(x, t) = min

i=1,...,N
α′i(t)x(t) (21)

and let i = argminl α
′
l(t)x(t). Then,

D+(v(x), t) = min
k

(α̇k(t) + α′k(t)Aix) ≤ α̇i + α′i(t)Aix

≤−piiα
′
i(t)x −

∑
j �=i

pjiα
′
j(t)x− q′ix ≤

≤−piiα
′
i(t)x −

∑
j �=i

pjiα
′
i(t)x − q′ix = −q′ix

Hence, for all σ(t),
D+(v(x)) ≤ −q′σ(t)x(t) (22)

which, after integration, gives

v(x(T ))− v(0) =
∫ T

0

D+v(x(τ))dτ

≤−
∫ T

0

q′σ(τ)x(τ)dτ.

(23)

Therefore,∫ T

0

q′σ(τ)x(τ)dτ + c′x(T ) ≤ v(0) = min
i=1,...,N

α′i(0)x0. (24)

This concludes the proof.

Notice that (18) requires the preliminary choice of the
parameters pij . In particular, the search for pij and αi

that satisfy Theorem 2 is a bilinear matrix inequality. We
can, at the cost of some conservatism in the upper bound,
reduce these parameters to a single one, say γ, so allowing
an easy search the best γ as far as the upper bound is
concerned.
Corollary 1. Let q ∈ Rn

+ and c ∈ Rn
+ be given, and let

the positive vectors {α1, . . . , αN}, αi ∈ Rn
+ satisfy for

some γ > 0 the modified coupled co-positive Lyapunov
equations:
α̇i +A′iαi +γ(αj−αi)+qi � 0 i �= j = 1, . . . , N. (25)

with final condition αi(T ) = c, ∀i. Then the state-
switching control given by (19) is such that∫ T

0

q′σ(τ)x(t)dt + c′x(t) ≤ min
i=1,...,N

α′i(0)x0 (26)

3. VIRUS MUTATION TREATMENT MODEL

HIV is responsible for AIDS with tens of millions of
people infected worldwide. Mutation is a key problem that
limits the effectiveness of current treatment regimes and
may lead to viral escape wherein despite long periods
of effective viral control using ART, HIV may mutate
to a form with high resistance to the ART used. In
this case, viral loads may rebound to high levels which
in turn result in immune system suppression and the
complications associated with AIDS.

Variant Therapy 1 Therapy 2

Wild type (x1) λ1 = −0.19 λ1 = −0.19
Genotype 1 (x2) λ2,1 = 0.16 λ2,2 = −0.19
Genotype 2 (x3) λ3,1 = −0.19 λ3,2 = 0.16

HR Genotype (x4) λ4 = 0.06 λ4 = 0.06

Table 1. Replication rates for viral variants and
therapy combinations for a symmetric case

3.1 A 4 variant, 2 drug combination, linear model

A simplified model for mutation dynamics was described
in [9]. Here we follow a similar philosophy, of seeking
detailed mathematical results and insights based on a
simplified model. The key species involved are: T : healthy
(i.e. uninfected) CD4+ T cells, and Vi : i = 1, 2, ...n, virus
strain i. In a similar way to [9], the key assumptions in our
model are: constant CD4+T cell counts, scalar dynamics
for each mutant, mutation rate independent of treatment
and mutant, deterministic model. As a simple motivating
example, recall the model from [9], we consider n = 4
genetic strains, and N = 2 possible drug therapies. The
viral strains are described as:

• Wild type genotype (WTG): In the absence of ther-
apy, this strain is the most prolific, however, it is also
the strain susceptible to both therapies.

• Genotype 1 (G1): A strain that is resistant to therapy
1, but is susceptible to therapy 2.

• Genotype 2 (G2): A strain that is resistant to therapy
2, but is susceptible to therapy 1.

• Highly resistant genotype (HRG): A genotype, with
relatively low proliferation rate, but that is resistant
to both drug therapies.

The dynamics of the model are described as follows
ẋ(t) =

(
Λσ(t) + μM

)
x(t) (27)

where x(t) ∈ R
n
+ is the vector of viral loads, Λσ is a

diagonal matrix with elements {λ1, λ2,σ, λ3,σ, λ4}, μ is the
mutation rate constant and M is the matrix describing the
graph of feasible mutations. Typical viral mutation rates
are of the order of μ = 1 × 10−4 and replication rates are
describe in the Table 1. We take a mutation graph that is
symmetric and circular, that is:

M =

⎡
⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎦ (28)

3.2 Cost Function

For medical reasons, the objective of ART has been defined
as maintaining viral suppression. In particular, this means
keeping the total virus load as small as possible over the
assigned horizon

J := c′x(T ) (29)
where c is the column vector with all ones. This cost should
be minimized under the action of the switching rule, details
about the cost function can be found in [9].
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3.3 Optimal control for HIV virus mitigation

Considering the 4 variant, 2 drug combination model (27),
this leads to the positive switched system

ẋ = Aσx, σ = {1, 2}
where

Aσ =

⎡
⎢⎣

λ1 0 0 0
0 λ2σ 0 0
0 0 λ3σ 0
0 0 0 λ4

⎤
⎥⎦+ μ

⎡
⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎦

Using symmetric replications rates, we can assume that
Assumption 1.

λ21 > 0, λ22 < 0, λ31 < 0, λ32 > 0
Assumption 2.

λ21 − λ22 + λ31 − λ32 = 0

Using Assumption 1, note that

J = A1−A2 = (λ21−λ22)

⎡
⎢⎣

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎤
⎥⎦ = (λ21−λ22)J̄

Since λ21 − λ22 > 0, we can define the decision function
γ(t) = π(t)′J̄x(t) that takes the form

γ(t) = π2(t)[x2(t)− x3(t)] + x3(t)[π2(t)− π3(t)] (30)
Moreover, from the structure of A1 and A2 it is possible
to conclude that

γ̇(t) = [π2(t)− π3(t)][x1(t) + x4(t)]
−[x2(t)− x3(t)][π1(t) + π4(t)]

(31)

The following lemma, which can be proven directly from
(30) and Assumption 1 is useful to characterize the optimal
solution.
Lemma 1. Under Assumption 1 the following conditions
hold:

|Sgn[x2(t)− x3(t)] + Sgn[π2(t)− π3(t)]| = 2

=⇒ Sgn[γ(t)] = Sgn[x2(t)− x3(t)]

Sgn[x2(t)− x3(t)] + Sgn[π2(t)− π3(t)] = 0,

=⇒ Sgn[γ̇(t)] = Sgn[π2(t)− π3(t)]

Sgn[ẋ2(t)− ẋ3(t)] = Sgn[1.5− σ(t)]

Sgn[π̇2(t)− π̇3(t)] = Sgn[σ(t)− 1.5]

Remark 1. Theorem 1 does not consider the possible ex-
istence of sliding modes, i.e. infinite frequency switching
of σ(t). However, the optimal state and costate variables
xo, πo can lie on a sliding surface, and this corresponds
to a chattering switching law. This leads to the notion of
extended (Filippov) trajectories satisfying a differential in-
clusion. To be precise, the optimal control is characterized
by

ẋo(t) ∈ co{A1x
o(t), A2x

o(t), · · · , ANxo(t)} (32)

−π̇o(t) ∈ co{A′1πo(t) + q1, · · · , A′Nπo(t) + qN} (33)

π′o(t)Aix
o(t) = constant,∀i (34)

In order to characterize the sliding modes, we look for a
compatible linear combination of the matrices

Ā = αA1 + (1− α)A2

with α ∈ [0, 1].
Lemma 2. Under Assumption 2, the trajectories

x2(t) = x3(t), π2(t) = π3(t)
satisfy

ẋ(t) = (αA1 + (1− α)A2)x(t),

π̇(t) = −(αA1 + (1− α)A2)π(t)
with

α =
λ32 − λ22

λ32 − λ22 + λ21 − λ31

and are such that
γ(t) ≡ 0

Proof It is enough to show that the variables x2(t)−x3(t)
and π2(t)− π3(t) obey autonomous differential equations.
Indeed,
ẋ2(t)− ẋ3(t) = α(λ21−λ31)x2(t)+ (1−α)(λ22−λ32)x3(t)
where

α(λ21 − λ31) = (1− α)(λ22 − λ32)
so that

ẋ2(t)− ẋ3(t) = r(x2(t)− x3(t))
Analogously

π̇2(t)− π̇3(t) = −r(π2(t)− π3(t))
where

r =
λ21λ32 − λ22λ31

λ32 − λ22 + λ21 − λ31

Now, let

k1 = argmin{x2(0), x3(0)}
k2 = argmin{c2, c3}

and

T �
1 = min

t≥0
: [0 1 − 1 0]eAk1 tx(0) = 0,

T �
2 = min

t≤T
: [0 1 − 1 0]e−Ak2(t−T )c = 0.

Notice that, thanks to the definition of k1, k2 and the
monotonicity conditions of x2(t) − x3(t), π2(t) − π3(t),
the time instants T �

1 and T �
2 are well defined and unique.

Clearly, by definition x2(T �
1 ) = x3(T �

1 ) and π(T �
2 ) =

π3(T �
2 ). We are now in the position to provide the main

result of this section.
Theorem 3. Let Assumptions 1, 2 be met with and assume
that T �

1 ≤ T �
2 . Then, the optimal control associated

with the initial state x(0) and cost c′x(T ) is given by
σ(t) = k1, t ∈ [0, T �

1 ] and σ(t) = k2, t ∈ [T �
2 , T ]. For

t ∈ [T �
1 , T �

2 ], the optimal control is given by the Filippov
trajectory along the plane x2 = x3, with dynamical matrix
A = αA1 + (1− α)A2.
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Proof We will verify that the control law satisfies the
conditions given by the Hamilton-Jacobi equations in the
intervals [0, T �

1 ] and [T �
2 , T ]. Moreover, in the interval

[T �
1 , T �

2 ] the optimal control state and costate variables
slide along the trajectories x2(t) = x3(t) and π2(t) = π3(t).
To this end, let σ(t) = k1 for t ∈ [0, T �

1 ], σ(t) = k2 for
t ∈ [T �

2 , T ] and

π(t) = eAk1 (T �
1−t)π(T �

1 ), t ∈ [0, T �
1 ]

π(t) = eA(T �
2−t)π(T �

2 ), t ∈ [T �
1 , T �

2 ]

π(t) = eAk2 (T−t)c, t ∈ [T �
2 , T ]

x(t) = eAk1 tx(0), t ∈ [0, T �
1 ]

x(t) = eA(t−T �
1 )x(T �

1 ), t ∈ [T �
1 , T �

2 ]

x(t) = eAk2 (t−T �
2 )x(T �

2 ), t ∈ [T �
2 , T ]

First of all notice that, by definition, x2(T �
1 ) = x3(T �

1 )
and π2(T �

2 ) = π3(T �
2 ). Thanks to Lemma 2, in the interval

[T �
1 , T �

2 ] we have x2(t) = x3(t) and π2(t) = π3(t). In the
intervals [0, T �

1 ] and [T �
2 , T ], consider the decision function

and its derivative, given by (30), (31), respectively. Now,
we have γ(T �

1 ) = γ(T �
2 ) = 0 and, for t ∈ [0, T �

1 ], t ∈ [T �
2 , T ]:

ẋ2(t)− ẋ3(t) = λ2kix2(t)− λ3kix3(t) =
{

> 0 ki = 1
< 0 ki = 2

π̇2(t)− π̇3(t) = −λ2kiπ2(t) + λ3kiπ3(t) =
{

> 0 ki = 1
< 0 ki = 2

This means that, for t ∈ [0, T �
1 ], t ∈ [T �

2 , T ]:

x2(t)− x3(t) =
{

< 0 ki = 1
> 0 ki = 2

π2(t)− π3(t) =
{

> 0 ki = 1
< 0 ki = 2

γ̇(t) =
{

> 0 ki = 1
< 0 ki = 2

Since γ(T �
i ) = 0 it follows

γ(0) = π(0)′J̄x(0) =
{

< 0 k1 = 1
> 0 k1 = 2

γ(T ) = π(T )′Jx̄(T ) =
{

< 0 k2 = 1
> 0 k2 = 2

which confirms σ(t) = argmini π(t)′Aix(t) = k1, for
t ∈ [0, T �

1 ] and σ(t) = argmini π(t)′Aix(t) = k2, for
t ∈ [T �

2 , T ].

Even though in practice the horizon length T may often be
large enough to guarantee that T �

1 ≤ T �
2 , for completeness,

we wish to also consider the small horizon case.
Theorem 4. Let Assumption (1) be met and 0 < T �

2 ≤
T �

1 < T . Then, the optimal control associated with the
initial state x(0) and cost c′x(T ) is given as follows:

If k1 = k2, then
σ(t) = k1, t ∈ [0, T ]

otherwise, if k1 �= k2, then

σ(t) =
{

k1 : t ∈ [0, T �
3 ]

k2 : t ∈ [T �
3 , T ]

}
where T �

3 ∈ [T �
2 , T �

1 ] is such that for t = T �
3

x(T �
2 )′eAk1(t−T �

2 )J̄e−Ak2 (t−T �
1 )π(T �

1 ) = 0

Proof Let first consider the case k1 = k2. Then, we will
verify that the constant control law σ(t) = k1 satisfies the
sufficient condition given by the Hamilton-Jacobi equa-
tions, i.e.

σ(t) = argmini π(t)′Aix(t),
π̇(t) = −Aσ(t)π(t), π(T ) = c

To this end, consider again the decision function γ(t)
and its derivative, given by (30) and (31), respectively.
Consider

π(t) = eAk1(T−t)c, t ∈ [0, T ]

x(t) = eAk1 tx(0), t ∈ [0, T ]
Moreover let k̄1 = 1 if k1 = 2 and viceversa. Since
T �

2 ≤ T �
1 , we conclude that

Sgn[x2(t)− x3(t)] = Sgn[π2(t)− π3(t)] = k1 − k̄1,

in the interval (T �
2 , T �

1 ). This implies that Sgn[γ(t)] = k1−
k̄1 in the same interval. Moreover,

Sgn[γ̇(t)] = Sgn[π2(t)− π3(t)]
in t ∈ [0, T �

2 ) and t ∈ (T �
1 , T ]. This means that the sign of

γ(t) is constant in [0, T ] and equals k1 − k̄1. The proof of
the first part is concluded.

Consider now the case k1 �= k2. By assumption,
Sgn[x2(t)− x3(t)] = k1 − k̄1, t ∈ [0, T �

2 )
and

Sgn[π2(t)− π3(t)] = k2 − k̄2, t ∈ (T �
1 , T ]

Notice that, in any possible switching point in the interval
[T �

2 , T �
1 ], the derivatives of x2(t)− x3(t) and π2(t)− π3(t)

change sign at t = T �
3 , so that Sgn[γ̇(t)] is constant in

[0, T ], and consequently, Sgn[x2(t) − x3(t)] = k1 − k̄1,
Sgn[π2(t) − π3(t)] = k2 − k̄2 in [0, T ]. We now have to
prove that indeed there exists a T �

3 . To this end, notice
that

Sgn[γ(T �
2 )] = k1 − k̄1, Sgn[γ(T �

1 )] = k2 − k̄2

This, together with Sgn[γ̇(t)] = Sgn[x2(t) − x3(t)] implies
that there exists T �

3 ∈ (T �
2 , T �

1 ) for which γ(T �
3 ) =

0. This value is the only point t ∈ [T �
2 , T �

1 ] satisfying
x(T �

2 )′eAk1 (t−T �
2 )J̄e−Ak2(t−T �

1 )π(T �
1 ) = 0.

4. SIMULATION RESULTS

To show numerically last results, we choose the initial
condition vector x = [103, 102, 0, 10−5] and the cost func-
tion weighting as c = [1, 50, 1, 1]′. Firstly, we compute
the time where the system will not switch T �

1 , for this
example is 16.792 days, after this time the control will be
switching in the sliding surface x2 = x3 for the period
from T �

1 to T �
2 , where T �

2 is 11.17 days before the end of
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the treatment. We can see in Fig. 1 the performance of
the optimal control. Using a cost function weighting as
c = [1, 1, 1, 1]′ and the guaranteed cost control, an upper
bound can be computed, for such control a performance
no worse than mini(α′ix(0)) = 81.001 will be obtain. The
final cost for a simulation of 100 days is J = 24.56, which
is exactly the the same as the optimal control.

These simulation results show that at least in some cases,
guaranteed cost control capture’s the possible sliding mode
behavior of the optimal control law. Indeed, consider a
matrix P ∈ M and its Frobenius eigenvector β, i.e.
such that Pβ = 0. It is known that β is a nonnegative
vector and it is possible to choose it in such a way that

∑N
i=1 βi = 1. Now, it is easy to see that the solution of

the differential equations (18) associated with the choice
γΠ ∈M are such that limγ→∞ αi(t) = ᾱ(t), ∀i. In order to
characterize the limit function ᾱ, multiply each equation
(18) by βi and sum up all of them. Since

∑N
i=1 βipji = 0,

and αi(t) = ᾱ(t), it results:

− ˙̄α(t) =

(
N∑

i=1

βiAi

)
ᾱ(t) +

N∑
i=1

βiqi

This equation is analogous to the equation of the costate
time evolution along a sliding mode. Therefore, the guar-
anteed cost control is capable of generating the possible
sliding behavior as exhibited by the optimal trajectories
satisfying, in some time interval, the equation ˙̄x(t) =(∑N

i=1 βiAi

)
x̄(t).

5. CONCLUSIONS

The main result of this paper shows that the optimal
control for this specific class of switched systems is given by
the Filippov trajectory along the plane x2 = x3. Relaxing
the demand for optimality, we introduce a suboptimal,
guaranteed cost algorithm, associated with the optimal
problem. Both strategies are applied to a specific virus
mutation problem. Using simulations results we conclude
that in this example, guaranteed cost control yields very
similar performance to the optimal control.
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